<div class="csl-bib-body">
<div class="csl-entry">Scherrer, S. A., De Lannoy, G., Heyvaert, Z., Bechtold, M., Albergel, C., El-Madany, T. S., & Dorigo, W. A. (2023). Effects of bias in an LAI data assimilation system on carbon uptake and hydrological variables and over Europe. In <i>EGU General Assembly 2023</i>. EGU General Assembly 2023, Wien, Austria. EGU. https://doi.org/10.5194/egusphere-egu23-11534</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187203
-
dc.description.abstract
Vegetation is a major control on land-atmosphere fluxes of carbon and water. An improved representation of vegetation in land surface and dynamic vegetation models can therefore improve both short-term weather predictions as well as long-term climate projections.
State update data assimilation (DA) of remotely sensed leaf area index (LAI) is one way to obtain vegetation state estimates consistent with physical constraints from a land surface model and observational data. Most LAI DA studies so far used bias-blind DA systems, i.e. they did not explicitly take bias between observations and model into account. However, if the observations are biased against the land surface model, this might hamper the performance of the DA system, because it can induce instabilities in the model. We therefore examined the effect of bias on an LAI DA system, and compared a bias-blind LAI DA system with bias-aware approaches.
For this purpose, we assimilated the Copernicus Global Land Service (CGLS) LAI into the Noah-MP land surface model over Europe in the 2002-2019 period.
We find that in areas with large LAI bias, the bias-blind LAI DA by design leads to a reduced bias between observed and modelled LAI and GPP, but it also has strong impacts on soil moisture, leading to a worse agreement with independent, satellite-derived ESA CCI soil moisture. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between update steps. This drift also propagates to short-term estimates of GPP and ET. Furthermore, internal DA diagnostics indicate suboptimal DA system performance.
The bias-aware approaches avoid the negative effects of the bias-blind assimilation, and still improve anomaly estimates of LAI. Therefore, bias-aware LAI DA might be a useful method to consider in LAI DA, especially when anomalies of LAI or GPP are of interest.
Our results furthermore show that LAI of CGLS and Noah-MP show strong disagreement especially in dry climates. Model calibration or DA methods that include parameter updating could be an alternative to bias-aware DA to reduce these discrepancies. Our results can guide such efforts, and highlight the need for multiple constraints.
en
dc.language.iso
en
-
dc.subject
remote sensing
en
dc.subject
hydrology
en
dc.title
Effects of bias in an LAI data assimilation system on carbon uptake and hydrological variables and over Europe
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
KU Leuven, Belgium
-
dc.contributor.affiliation
KU Leuven, Belgium
-
dc.contributor.affiliation
KU Leuven, Belgium
-
dc.contributor.affiliation
European Space Agency Climate Office, UK
-
dc.contributor.affiliation
Max Planck Institute for Biogeochemistry, Germany
-
dc.type.category
Poster Contribution
-
tuw.booktitle
EGU General Assembly 2023
-
tuw.relation.publisher
EGU
-
tuw.book.chapter
EGU23-11534
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120 - Department für Geodäsie und Geoinformation
-
tuw.publication.orgunit
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
tuw.publisher.doi
10.5194/egusphere-egu23-11534
-
tuw.author.orcid
0000-0002-6743-7122
-
tuw.author.orcid
0000-0002-9748-1124
-
tuw.author.orcid
0000-0002-8042-9792
-
tuw.author.orcid
0000-0003-1095-2702
-
tuw.author.orcid
0000-0002-0726-7141
-
tuw.author.orcid
0000-0001-8054-7572
-
tuw.event.name
EGU General Assembly 2023
en
tuw.event.startdate
23-04-2023
-
tuw.event.enddate
28-04-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
European Geosciences Union
-
tuw.event.presenter
Scherrer, Samuel Anton
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
KU Leuven, Belgium
-
crisitem.author.dept
KU Leuven, Belgium
-
crisitem.author.dept
KU Leuven, Belgium
-
crisitem.author.dept
European Space Agency Climate Office, UK
-
crisitem.author.dept
Max Planck Institute for Biogeochemistry, Germany
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung