<div class="csl-bib-body">
<div class="csl-entry">Poks, A., Lösch, M., Fallmann, M., & Kozek, M. (2023). Data-based Predictions of Load Profiles for Buildings for Flexible Optimization. In H. Gremmel-Simon (Ed.), <i>e-nova International Conference. Energie und Klimawandel : Energie - Gebäude - Umwelt</i> (pp. 49–54). Holzhausen. https://doi.org/10.34726/4503</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187419
-
dc.identifier.uri
https://doi.org/10.34726/4503
-
dc.description.abstract
The flexible usage of modern buildings results in varying load profiles. This means that
internal loads, which are often critical for both energy consumption and the thermodynamics of the building, can be of the type of residential or commercial buildings, or a combination of both. Nevertheless, typical usage patterns arise in residential and non-residential buildings. These electric load profiles can be measured, and based on this measurement data, dynamic models can be designed that serve as a basis for prediction. Such predictions, which are adapted to the specific use case, can subsequently be used for optimized operation management (heating/air conditioning, storage management, sector coupling, etc.). In the present work, dynamic mode decomposition is used for data-driven modeling and predicting the load profiles of buildings with mixed usage. This enables adaptive yet reliable predictions in buildings with time-varying mixed usage. Utilizing the structure of a Takagi-Sugeno fuzzy system for energy management a seamless weighting between residential and commercial usage becomes possible.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH; Productbloks GmbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
Science.Research.Pannonia
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Data based predictions
en
dc.subject
dynamic mode decomposition
en
dc.subject
data-driven modeling
en
dc.title
Data-based Predictions of Load Profiles for Buildings for Flexible Optimization
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/4503
-
dc.contributor.editoraffiliation
University of Applied Sciences Burgenland, Austria
-
dc.relation.isbn
978-3-903207-79-0
-
dc.relation.doi
10.57739/978-3-903207-79-0
-
dc.description.startpage
49
-
dc.description.endpage
54
-
dc.relation.grantno
871526
-
dcterms.dateSubmitted
2023-06-02
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
e-nova International Conference. Energie und Klimawandel : Energie - Gebäude - Umwelt
-
tuw.container.volume
29
-
tuw.relation.publisher
Holzhausen
-
tuw.relation.publisherplace
Wien
-
tuw.project.title
Integrierte Wärmemanagementsysteme für elektrisch angetriebene Kühlkleintransporter
-
tuw.researchTopic.id
E1
-
tuw.researchTopic.id
E6
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Energy Active Buildings, Settlements and Spatial Infrastructures