<div class="csl-bib-body">
<div class="csl-entry">Cervenka, J., Kosik, R., Vasicek, M.-T., Gritsch, M., Selberherr, S., & Grasser, T. (2023). Macroscopic Transport Models for Classical Device Simulation. In M. Rudan, R. Brunetti, & S. Reggiani (Eds.), <i>Springer Handbook of Semiconductor Devices</i> (pp. 1335–1381). Springer. https://doi.org/10.1007/978-3-030-79827-7_37</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187441
-
dc.description.abstract
We review macroscopic transport models as used in classical device simulation such as drift-diffusion, hydrodynamic, and energy transport models. Using a systematic approach, these transport models are derived from the semiclassical Boltzmann equation by applying the method of moments. The drift-diffusion model is based on the first two moments of the Boltzmann equation, while hydrodynamic and energy transport models consider three or four moments. Within the framework of the diffusion approximation, the convective terms in the hydrodynamic models can be neglected, resulting in the much simpler diffusive energy transport models. A discussion of the physical assumptions needed for the validity of these models is given.
In cases where the energy distribution is insufficiently described by a heated Maxwellian distribution, energy transport models give poor results. Based on the diffusion approximation, a six-moment model generalizing the energy transport model is presented. All model parameters can be extracted from fullband bulk Monte Carlo simulations. The six-moment model is applied for the simulation of devices with channel length in the deca-nanometer regime. Short-channel and hot-carrier effects for which the heated Maxwellian assumption introduces particularly large errors are studied. Comparing all models, it is demonstrated that the six-moment model can improve on the drift-diffusion and energy transport models.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
Macroscopic transport models
en
dc.subject
Device simulation
en
dc.subject
Classical device simulation
en
dc.subject
Bolzmann-transport equation
en
dc.subject
Drift diffusion
en
dc.subject
Hydrodynamic transport
en
dc.subject
Energy transport
en
dc.subject
Six-moments
en
dc.subject
Higher-order models
en
dc.subject
Semiconductor equations
en
dc.subject
Poisson equation
en
dc.title
Macroscopic Transport Models for Classical Device Simulation
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
Interporto Bologna (Italy), Italy
-
dc.contributor.editoraffiliation
University of Modena and Reggio Emilia, Italy
-
dc.contributor.editoraffiliation
Interporto Bologna (Italy), Italy
-
dc.relation.isbn
978-3-030-79826-0
-
dc.description.startpage
1335
-
dc.description.endpage
1381
-
dc.relation.grantno
P33151-N
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Springer Handbook of Semiconductor Devices
-
tuw.book.ispartofseries
Springer Handbooks
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Numerische Constraints für die Wigner- und Sigmagleichung
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E360 - Institut für Mikroelektronik
-
tuw.publication.orgunit
E360-01 - Forschungsbereich Mikroelektronik
-
tuw.publisher.doi
10.1007/978-3-030-79827-7_37
-
dc.description.numberOfPages
47
-
tuw.author.orcid
0000-0002-5583-6177
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
book part
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.orcid
0000-0002-5583-6177
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik