<div class="csl-bib-body">
<div class="csl-entry">Kang, S., Borgsmüller, N., Valecha, M., Kuipers, J., Alves, J. M., Prado Lopez, S., Chantada, D., Beerenwinkel, N., Posada, D., & Szczurek, E. (2022). SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data. <i>Genome Biology</i>, <i>23</i>, Article 248. https://doi.org/10.1186/s13059-022-02813-9</div>
</div>
-
dc.identifier.issn
1474-760X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187465
-
dc.description.abstract
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.
en
dc.language.iso
en
-
dc.publisher
BMC
-
dc.relation.ispartof
Genome Biology
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Humans
en
dc.subject
Phylogeny
en
dc.subject
Base Sequence
en
dc.subject
Sequence Analysis, DNA
en
dc.subject
DNA
en
dc.subject
Nucleotides
en
dc.subject
Acquisition bias correction
en
dc.subject
Cell phylogeny reconstruction
en
dc.subject
Finite-sites assumption
en
dc.subject
Single-cell DNA sequencing
en
dc.subject
Somatic variant calling
en
dc.subject
Statistical phylogenetic models
en
dc.subject
Triple Negative Breast Neoplasms
en
dc.title
SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data