<div class="csl-bib-body">
<div class="csl-entry">Schrinski, B., Haslinger, P., Schmiedmayer, H.-J., Hornberger, K., & Nimmrichter, S. (2023). Testing collapse models with Bose-Einstein-condensate interferometry. <i>Physical Review A</i>, <i>107</i>(4), Article 043320. https://doi.org/10.1103/PhysRevA.107.043320</div>
</div>
-
dc.identifier.issn
2469-9926
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187499
-
dc.description.abstract
The model of continuous spontaneous localization (CSL) is the most prominent consistent modification of quantum mechanics predicting an objective quantum-to-classical transition. Here we show that precision interferometry with Bose-Einstein-condensed atoms can serve to lower the current empirical bound on the localization rate parameter by several orders of magnitude. This works by focusing on the atom count distributions rather than just mean population imbalances in the interferometric signal of squeezed Bose-Einstein condendates, without the need for highly entangled Greenberger-Horne-Zeilinger-like states. In fact, the interplay between CSL-induced diffusion and dispersive atom-atom interactions results in an amplified sensitivity of the condensate to CSL. We discuss experimentally realistic measurement schemes utilizing state-of-the-art experimental techniques to test new regions of parameter space and, pushed to the limit, to probe and potentially rule out large relevant parameter regimes of CSL.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review A
-
dc.subject
model of continuous spontaneous localization
en
dc.title
Testing collapse models with Bose-Einstein-condensate interferometry