<div class="csl-bib-body">
<div class="csl-entry">Kenison, G., Nieuwveld, J., Ouaknine, J., & Worrell, J. (2023). Positivity Problems for Reversible Linear Recurrence Sequences. In K. Etessami, U. Feige, & G. Puppis (Eds.), <i>50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)</i> (pp. 1–17). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2023.130</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187706
-
dc.description.abstract
It is a longstanding open problem whether there is an algorithm to decide the Positivity Problem for linear recurrence sequences (LRS) over the integers, namely whether given such a sequence, all its terms are non-negative. Decidability is known for LRS of order 5 or less, i.e., for those sequences in which every new term depends linearly on the previous five (or fewer) terms. For simple LRS (i.e., those sequences whose characteristic polynomials have no repeated roots), decidability of Positivity is known up to order 9.
In this paper, we focus on the important subclass of reversible LRS, i.e., those integer LRS ∞ ⟨un ⟩∞ n=0 whose bi-infinite completion ⟨un ⟩n=−∞ also takes exclusively integer values; a typical example is the classical Fibonacci (bi-)sequence ⟨. . . , 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, . . .⟩. Our main results are that Positivity is decidable for reversible LRS of order 11 or less, and for simple reversible LRS of order 17 or less.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
dc.subject
The Positivity Problem
en
dc.subject
Linear Recurrence Sequences
en
dc.subject
Verification
en
dc.title
Positivity Problems for Reversible Linear Recurrence Sequences
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Max Planck Institute for Software Systems, Germany
-
dc.contributor.affiliation
Max Planck Institute for Software Systems, Germany
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
Weizmann Institute of Science, Israel
-
dc.contributor.editoraffiliation
University of Udine, Italy
-
dc.relation.isbn
978-3-95977-278-5
-
dc.description.startpage
1
-
dc.description.endpage
17
-
dc.relation.grantno
ERC Consolidator Grant 2020
-
dc.relation.grantno
ICT19-018
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1868-8969
-
tuw.booktitle
50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
-
tuw.container.volume
261
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
-
tuw.relation.publisherplace
Wadern
-
tuw.book.chapter
130
-
tuw.project.title
Automated Reasoning with Theories and Induction for Software Technologies
-
tuw.project.title
Distribution Recovery for Invariant Generation of Probabilistic Programs
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publisher.doi
10.4230/LIPIcs.ICALP.2023.130
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0002-7661-7061
-
tuw.author.orcid
0000-0001-8151-2443
-
tuw.editor.orcid
0000-0001-5700-3462
-
tuw.editor.orcid
0009-0006-3749-4392
-
tuw.editor.orcid
0000-0001-9831-3264
-
tuw.event.name
50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
en
tuw.event.startdate
10-07-2023
-
tuw.event.enddate
14-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Paderborn
-
tuw.event.country
DE
-
tuw.event.presenter
Nieuwveld, Joris
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
crisitem.project.grantno
ERC Consolidator Grant 2020
-
crisitem.project.grantno
ICT19-018
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering