<div class="csl-bib-body">
<div class="csl-entry">Key, K., Baidoo, F. A., Elgeti, S., & Hughes, T. J. R. (2023, June 19). <i>Residual-Based Variational Stabilization of Isogeometric Finite Element Methods for Advection-Diffusion-Reaction Problems</i> [Conference Presentation]. 11th International Conference on IsoGeometric Analysis (IGA 2023), Lyon, France. http://hdl.handle.net/20.500.12708/187755</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187755
-
dc.description.abstract
Some engineering applications can be represented by Advection-Diffusion-Reaction (ADR) problems. Such ADR problems are oftentimes numerically analyzed; for example, by using Galerkin Finite Element Methods (FEMs). In fact, Galerkin FEMs are very popular and their results are proven to converge. Still, real-world Galerkin results frequently suffer from spurious oscillations as sharp layers (which are often present, e.g., at boundaries) are not adequately resolved. Sufficiently resolving such sharp layers is usually — and especially for multidimensional problems — infeasible due to the resulting huge computational costs. This drastic proliferation of computational costs can be mitigated by modifying the variational formulations instead of their discretizations (see, e.g., [1]).
We will concern ourselves with a conservative and concise residual-based variational stabilization of isogeometric FEMs for ADR problems. In particular, the proposed stabilization recovers the results from [2] and [3] for the AD and RD limits, respectively. Furthermore, the one-dimensional stabilization is extended to multidimensional settings in an untraditional manner: the variational methods instead of their stabilization parameters are generalized.
[1] G. Hauke, G. Sangalli, and M.H. Doweidar. Combining Adjoint Stabilized Methods for the Advection-Diffusion-Reaction Problem. Mathematical Models and Methods in Applied Sciences, Vol. 17, 2:305–326, 2007.
[2] A.N. Brooks, and T.J.R. Hughes. Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.
[3] L.P. Franca, and E.G. Dutra Do Carmo. The Galerkin Gradient Least-Squares Method. Computer Methods in Applied Mechanics and Engineering, 74:41–54, 1989.
en
dc.language.iso
en
-
dc.subject
Conservative Variational Stabilization
en
dc.subject
Finite Element Methods
en
dc.subject
Isogeometric Analysis
en
dc.subject
Advection-Diffusion-Reaction Problems
en
dc.subject
Sharp Layers
en
dc.title
Residual-Based Variational Stabilization of Isogeometric Finite Element Methods for Advection-Diffusion-Reaction Problems
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
The University of Texas at Austin, United States of America (the)
-
dc.contributor.affiliation
The University of Texas at Austin, United States of America (the)
-
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E317-01 - Forschungsbereich Leichtbau
-
tuw.publication.orgunit
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
tuw.author.orcid
0009-0008-5263-5776
-
tuw.author.orcid
0009-0008-7022-783X
-
tuw.author.orcid
0000-0002-4474-1666
-
tuw.author.orcid
0000-0001-7024-8368
-
tuw.event.name
11th International Conference on IsoGeometric Analysis (IGA 2023)
en
dc.description.sponsorshipexternal
Deutsche Forschungsgemeinschaft (DFG)
-
dc.relation.grantnoexternal
333849990/GRK2379
-
tuw.event.startdate
18-06-2023
-
tuw.event.enddate
21-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lyon
-
tuw.event.country
FR
-
tuw.event.presenter
Key, Konstantin
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
25
-
wb.sciencebranch.value
75
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper not in proceedings
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
crisitem.author.dept
The University of Texas at Austin
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.dept
The University of Texas at Austin
-
crisitem.author.orcid
0009-0008-5263-5776
-
crisitem.author.orcid
0000-0002-4474-1666
-
crisitem.author.parentorg
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik