<div class="csl-bib-body">
<div class="csl-entry">Fenz, S., Neubauer, T., Friedel, J. K., & Wohlmuth, M.-L. (2023). AI- and data-driven crop rotation planning. <i>Computers and Electronics in Agriculture</i>, <i>212</i>, Article 108160. https://doi.org/10.1016/j.compag.2023.108160</div>
</div>
-
dc.identifier.issn
0168-1699
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188009
-
dc.description.abstract
Crop rotation planning is the process of deciding the types and the temporal succession of plants on agricultural areas to increase soil quality, crop yield, and pest/weed resistance. The data sources and modalities available for crop rotation planning are very diverse and the domain lacks solely data-driven approaches. In this paper we used literature- and NDVI-measurement-based successor crop suitability matrices and crop-specific attributes such as contribution margin and nitrogen demand as input for training an DQN-based reinforcement learning agent to generate crop rotation sequences. Practitioners and crop rotation experts validated the generated crop rotation sequences and concluded that most of the sequences are realistic, comply with existing crop rotation rule sets, and can be applied in practice.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.publisher
ELSEVIER SCI LTD
-
dc.relation.ispartof
Computers and Electronics in Agriculture
-
dc.subject
Crop rotation
en
dc.subject
Artificial intelligence
en
dc.subject
Machine learning
en
dc.subject
Decision support
en
dc.subject
Organic farming
en
dc.title
AI- and data-driven crop rotation planning
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
BOKU University, Austria
-
dc.contributor.affiliation
BOKU University, Austria
-
dc.relation.grantno
877158
-
dc.type.category
Original Research Article
-
tuw.container.volume
212
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Künstliche Intelligenz zur Planung von Fruchtfolgen und Humusanreicherung
-
tuw.researchTopic.id
E5
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Efficient Utilisation of Material Resources
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Computers and Electronics in Agriculture
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
tuw.publisher.doi
10.1016/j.compag.2023.108160
-
dc.date.onlinefirst
2023-08-25
-
dc.identifier.articleid
108160
-
dc.identifier.eissn
1872-7107
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0002-2880-1526
-
tuw.author.orcid
0000-0002-9814-6045
-
tuw.author.orcid
0000-0002-2224-8694
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
BOKU University
-
crisitem.author.dept
BOKU University
-
crisitem.author.orcid
0000-0002-2880-1526
-
crisitem.author.orcid
0000-0002-9814-6045
-
crisitem.author.orcid
0000-0002-2224-8694
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH