<div class="csl-bib-body">
<div class="csl-entry">Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2023). On the parameterized complexity of clustering problems for incomplete data. <i>Journal of Computer and System Sciences</i>, <i>134</i>, 1–19. https://doi.org/10.1016/j.jcss.2022.12.001</div>
</div>
-
dc.identifier.issn
0022-0000
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188028
-
dc.description.abstract
We study fundamental clustering problems for incomplete data. Specifically, given a set of incomplete d-dimensional vectors (representing rows of a matrix), the goal is to complete the missing vector entries in a way that admits a partitioning of the vectors into at most k clusters with radius or diameter at most r. We give characterizations of the parameterized complexity of these problems with respect to the parameters k, r, and the minimum number of rows and columns needed to cover all the missing entries. We show that the considered problems are fixed-parameter tractable when parameterized by the three parameters combined, and that dropping any of the three parameters results in parameterized intractability. A byproduct of our results is that, for the complete data setting, all problems under consideration are fixed-parameter tractable parameterized by k+r.
en
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Computer and System Sciences
-
dc.subject
Clustering
en
dc.subject
Incomplete data
en
dc.subject
Parameterized complexity
en
dc.title
On the parameterized complexity of clustering problems for incomplete data