<div class="csl-bib-body">
<div class="csl-entry">Böck, M., Habchi, S., Nayrolles, M., & Cito, J. (2023). Performance Prediction From Source Code Is Task and Domain Specific. In <i>2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC)</i> (pp. 35–42). IEEE. https://doi.org/10.1109/ICPC58990.2023.00015</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188031
-
dc.description.abstract
Performance is key to the success and adoption of software systems. In video games, performance is commonly highlighted as one of the top quality concerns raised by players. To check the performance of their systems, development teams tend to rely on profiling and monitoring tools, which observe program executions to identify regressions. The usage of static analysis tools for this purpose has been so far limited. Lately, the success of Large Language Models in many code analytics tools led to attempts to leverage them in static performance analysis. These studies showed promising results in predicting runtime and regressions on large public datasets. In this paper, we evaluate the usability of such models in practice, and particularly in the domain of video games. We train a state-of-the-art neural network on the Code4Bench dataset to predict runtime regressions for programming competition programs, then evaluate its ability to generalize to new domains. Our results show that these models achieve great results (e.g. 95.73% accuracy for performance comparison) on the original domain for programs solving in-sample programming tasks, yet fail to generalize to out-of-sample tasks. Furthermore, we show that transfer techniques such as domain adversarial adaptation and model fine-tuning are not sufficient to transfer these models to the target industrial domain of AAA games.
en
dc.language.iso
en
-
dc.subject
Deep Learning
en
dc.subject
Defect Prediction
en
dc.subject
Repository Mining
en
dc.subject
Software performance
en
dc.title
Performance Prediction From Source Code Is Task and Domain Specific
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
La Forge Ubisoft, Canada
-
dc.contributor.affiliation
La Forge Ubisoft, Canada
-
dc.relation.isbn
979-8-3503-3750-1
-
dc.description.startpage
35
-
dc.description.endpage
42
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
tuw.publisher.doi
10.1109/ICPC58990.2023.00015
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-5989-1413
-
tuw.author.orcid
0000-0001-5248-237X
-
tuw.event.name
2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC)
en
tuw.event.startdate
15-05-2023
-
tuw.event.enddate
16-05-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Böck, Markus
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
La Forge Ubisoft, Canada
-
crisitem.author.dept
La Forge Ubisoft, Canada
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.orcid
0000-0002-5989-1413
-
crisitem.author.orcid
0000-0001-5248-237X
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering