<div class="csl-bib-body">
<div class="csl-entry">Ahmad, S., Uyanık, H., Ovatman, T., Sandıkkaya, M. T., Maio, V. D., Brandić, I., & Aral, A. (2023). Sustainable Environmental Monitoring via Energy and Information Efficient Multi-Node Placement. <i>IEEE Internet of Things Journal</i>. https://doi.org/10.1109/JIOT.2023.3303124</div>
</div>
-
dc.identifier.issn
2327-4662
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188035
-
dc.description.abstract
The Internet of Things is gaining traction for sensing and monitoring outdoor environments such as water bodies, forests, or agricultural lands. Sustainable deployment of sensors for environmental sampling is a challenging task because of the spatial and temporal variation of the environmental attributes to be monitored, the lack of the infrastructure to power the sensors for uninterrupted monitoring, and the large continuous target environment despite the sparse and limited sampling locations. In this paper, we present an environment monitoring framework that deploys a network of sensors and gateways connected through low-power, long-range networking to perform reliable data collection. The three objectives correspond to the optimization of information quality, communication capacity, and sustainability. Therefore, the proposed environment monitoring framework consists of three main components: (i) to maximize the information collected, we propose an optimal sensor placement method based on QR decomposition that deploys sensors at information- and communication-critical locations; (ii) to facilitate the transfer of big streaming data and alleviate the network bottleneck caused by low bandwidth, we develop a gateway configuration method with the aim to reduce the deployment and communication costs; and (iii) to allow sustainable environmental monitoring, an energy-aware optimization component is introduced. We validate our method by presenting a case study for monitoring the water quality of the Ergene River in Turkey. Detailed experiments subject to real-world data show that the proposed method is both accurate and efficient in monitoring a large environment and catching up with dynamic changes. Index Terms—Environmental monitoring, sensor placement, gateway configuration, wireless sensor networks, LoRaWAN, energy efficiency, multi-objective optimization, QR decomposition.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Internet of Things Journal
-
dc.subject
Environmental monitoring
en
dc.subject
sensor placement
en
dc.subject
gateway configuration
en
dc.subject
wireless sensor networks
en
dc.subject
LoRaWAN
en
dc.subject
energy efficiency
en
dc.subject
multi-objective optimization
en
dc.subject
QR decomposition
en
dc.title
Sustainable Environmental Monitoring via Energy and Information Efficient Multi-Node Placement
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Istanbul Technical University, Turkey
-
dc.contributor.affiliation
Istanbul Technical University, Turkey
-
dc.contributor.affiliation
Istanbul Technical University, Turkey
-
dc.contributor.affiliation
Umeå University, Sweden
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Internet of Things Journal
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
tuw.publisher.doi
10.1109/JIOT.2023.3303124
-
dc.date.onlinefirst
2023-08-08
-
dc.identifier.eissn
2327-4662
-
tuw.author.orcid
0000-0003-2665-2085
-
tuw.author.orcid
0000-0001-5918-3145
-
tuw.author.orcid
0000-0002-9756-603X
-
tuw.author.orcid
0000-0002-7352-3895
-
tuw.author.orcid
0000-0001-7424-0208
-
tuw.author.orcid
0000-0002-2281-8183
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
Istanbul Technical University
-
crisitem.author.dept
Istanbul Technical University
-
crisitem.author.dept
Istanbul Technical University
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-2665-2085
-
crisitem.author.orcid
0000-0001-5918-3145
-
crisitem.author.orcid
0000-0002-9756-603X
-
crisitem.author.orcid
0000-0002-7352-3895
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering