<div class="csl-bib-body">
<div class="csl-entry">Christaki, M., Eniser, H. F., Hoffmann, J., Singla, A., & Wüstholz, V. (2023). Specifying and Testing k-Safety Properties for Machine-Learning Models. In <i>Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)</i> (pp. 4748–4757). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/528</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188066
-
dc.description.abstract
Machine-learning models are becoming increasingly prevalent in our lives, for instance assisting in image-classification or decision-making tasks. Consequently, the reliability of these models is of critical importance and has resulted in the development of numerous approaches for validating and verifying their robustness and fairness. However, beyond such specific properties, it is challenging to specify, let alone check, general functional-correctness expectations from models. In this paper, we take inspiration from specifications used in formal methods, expressing functional-correctness properties by reasoning about k different executions---so-called k-safety properties. Considering a credit-screening model of a bank, the expected property that "if a person is denied a loan and their income decreases, they should still be denied the loan" is a 2-safety property. Here, we show the wide applicability of k-safety properties for machine-learning models and present the first specification language for expressing them. We also operationalize the language in a framework for automatically validating such properties using metamorphic testing. Our experiments show that our framework is effective in identifying property violations, and that detected bugs could be used to train better models.
en
dc.description.sponsorship
Max-Planck-Gesellschaft zur Förderu der Wissenschaften e.V.
-
dc.language.iso
en
-
dc.relation.ispartofseries
IJCAI
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
k-safety properties
en
dc.subject
machine-learning models
en
dc.title
Specifying and Testing k-Safety Properties for Machine-Learning Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.contributor.affiliation
MPI-SWS, Germany
-
dc.contributor.affiliation
Saarland University, Germany
-
dc.contributor.affiliation
MPI-SWS, Germany
-
dc.contributor.affiliation
ConsenSys, Austria
-
dc.relation.isbn
978-1-956792-03-4
-
dc.relation.issn
1045-0823
-
dc.description.startpage
4748
-
dc.description.endpage
4757
-
dc.relation.grantno
01/2022
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
IJCAI
-
tuw.relation.publisher
International Joint Conferences on Artificial Intelligence
-
tuw.project.title
Google Research Scholar Award for conducting research on "Metamorphic Specification and Testing of Machine-Learning Models"
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publisher.doi
10.24963/ijcai.2023/528
-
dc.identifier.libraryid
AC17204204
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0002-2649-1958
-
tuw.author.orcid
0000-0002-3259-8794
-
tuw.author.orcid
0000-0001-9922-0668
-
tuw.author.orcid
0000-0003-1496-1104
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
The 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023)
en
dc.description.sponsorshipexternal
German Research Foundation (DFG)
-
dc.relation.grantnoexternal
389792660
-
tuw.event.startdate
19-08-2023
-
tuw.event.enddate
25-08-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Macao
-
tuw.event.country
CN
-
tuw.event.presenter
Eniser, Hasan Ferit
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairetype
conference paper
-
crisitem.author.dept
E194-01 - Forschungsbereich Information und Software Engineering
-
crisitem.author.dept
MPI-SWS, Germany
-
crisitem.author.dept
Saarland University, Germany
-
crisitem.author.dept
MPI-SWS, Germany
-
crisitem.author.dept
ConsenSys, Austria
-
crisitem.author.orcid
0000-0002-2649-1958
-
crisitem.author.orcid
0000-0001-9922-0668
-
crisitem.author.orcid
0000-0003-1496-1104
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
Max-Planck-Gesellschaft zur Förderu der Wissenschaften e.V.