<div class="csl-bib-body">
<div class="csl-entry">Jaoua, M. (2023). <i>Data exfiltration attacks on text classification models trained in a federated manner</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.97105</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.97105
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188076
-
dc.description.abstract
With the rise of federated learning as a privacy-preserving method for training machine learning models, many companies and organizations are interested in collaborating with one another, however, lack the necessary expertise and resources, or want to ensure time and cost efficiency. Therefore, they hire third-parties to develop machine learning and federated learning pipelines. The third-parties can be malicious and perform a data exfiltration attack, which involves exposing sensitive training data through the model parameters or predictions. We evaluate data exfiltration attacks in both centralized and federated settings, with a focus on text classification models. We explore the sign encoding white-box attack and the black-box trigger attack and investigate the parameters that enhance the attacks success rate and preserve the effectiveness of the models. We show that the success rate of white- and black-box data exfiltration attacks depends on the dataset characteristics, the model architecture, the model training, and the attack parameters. We also show that it is possible to exfiltrate sensitive data in the federated setting for both IID and non-IID partitioning.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Data Exfiltration
en
dc.subject
Adversarial Attacks
en
dc.subject
Data Hiding
en
dc.subject
Federated Learning
en
dc.subject
Machine Learning
en
dc.subject
Deep Learning
en
dc.subject
Natural Language Processing
en
dc.subject
Text Classification
en
dc.title
Data exfiltration attacks on text classification models trained in a federated manner
en
dc.title.alternative
Data Exfiltration Angriffe auf föderiert trainierte Textklassifikationsmodelle
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.97105
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Maroua Jaoua
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Mayer, Rudolf
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering