<div class="csl-bib-body">
<div class="csl-entry">Celarek, A., Hermosilla Casajus, P., Kerbl, B., Ropinski, T., & Wimmer, M. (2022). Gaussian Mixture Convolution Networks. In <i>The Tenth International Conference on Learning Representations (ICLR 2022)</i>. The Tenth International Conference on Learning Representations, ICLR 2022, Unknown. https://doi.org/10.34726/4801</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188182
-
dc.identifier.uri
https://doi.org/10.34726/4801
-
dc.description.abstract
This paper proposes a novel method for deep learning based on the analytical convolution of multidimensional Gaussian mixtures. In contrast to tensors, these do not suffer from the curse of dimensionality and allow for a compact representation, as data is only stored where details exist. Convolution kernels and data are Gaussian mixtures with unconstrained weights, positions, and covariance matrices. Similar to discrete convolutional networks, each convolution step produces several feature channels, represented by independent Gaussian mixtures. Since traditional transfer functions like ReLUs do not produce Gaussian mixtures, we propose using a fitting of these functions instead. This fitting step also acts as a pooling layer if the number of Gaussian components is reduced appropriately. We demonstrate that networks based on this architecture reach competitive accuracy on Gaussian mixtures fitted to the MNIST and ModelNet data sets.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
-
dc.subject
deep learning architecture
en
dc.subject
gaussian convolution
en
dc.subject
gaussian mixture
en
dc.subject
3D
en
dc.title
Gaussian Mixture Convolution Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Attribution-ShareAlike 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
de
dc.identifier.doi
10.34726/4801
-
dc.contributor.affiliation
Universität Ulm, Germany
-
dc.contributor.affiliation
Universität Ulm, Germany
-
dc.relation.grantno
813170
-
dcterms.dateSubmitted
2021-09-29
-
dc.rights.holder
Authors
-
dc.type.category
Poster Contribution
-
tuw.booktitle
The Tenth International Conference on Learning Representations (ICLR 2022)
-
tuw.peerreviewed
true
-
tuw.project.title
Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication