<div class="csl-bib-body">
<div class="csl-entry">Moller, F. S., Besse, N., Mazets, I., Stimming, H. P., & Mauser, N. J. (2023). The dissipative Generalized Hydrodynamic equations and their numerical solution. <i>Journal of Computational Physics</i>, <i>493</i>, Article 112431. https://doi.org/10.1016/j.jcp.2023.112431</div>
</div>
-
dc.identifier.issn
0021-9991
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188261
-
dc.description.abstract
“Generalized Hydrodynamics” (GHD) stands for a model that describes one-dimensional integrable systems in quantum physics, such as ultra-cold atoms or spin chains. Mathematically, GHD corresponds to nonlinear equations of kinetic type, where the main unknown, a statistical distribution function , lives in a phase space which is constituted by a one-dimensional position variable z, and a one-dimensional “kinetic” variable θ, actually a wave-vector, called “rapidity”. Two key features of GHD equations are first a non-local and nonlinear coupling in the advection term, and second an infinite set of conserved quantities, which prevent the system from thermalizing. To go beyond this, we consider the dissipative GHD equations, which are obtained by supplementing the right-hand side of the GHD equations with a non-local and nonlinear diffusion operator or a Boltzmann-type collision integral. In this paper, we deal with new high-order numerical methods to efficiently solve these kinetic equations. In particular, we devise novel backward semi-Lagrangian methods for solving the advective part (the so-called Vlasov equation) by using a high-order time-Taylor series expansion for the advection fields, whose successive time derivatives are obtained by a recursive procedure. This high-order temporal approximation of the advection fields is used to design new implicit/explicit Runge–Kutta semi-Lagrangian methods, which are compared to Adams–Moulton semi-Lagrangian schemes. For solving the source terms, constituted by the diffusion and collision operators, we use and compare different numerical methods of the literature.
en
dc.description.sponsorship
Vereine, Stiftungen, Preise
-
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Computational Physics
-
dc.subject
Generalized Hydrodynamics
en
dc.title
The dissipative Generalized Hydrodynamic equations and their numerical solution
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Université Côte d'Azur, France
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.relation.grantno
FQXi-IAF19-03-S1
-
dc.type.category
Original Research Article
-
tuw.container.volume
493
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
FUELING QUANTUM FIELD MACHINES WITH INFORMATION
-
tuw.researchTopic.id
Q6
-
tuw.researchTopic.name
Quantum Many-body Systems Physics
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Computational Physics
-
tuw.publication.orgunit
E141-02 - Forschungsbereich Atom Physics and Quantum Optics
-
tuw.publisher.doi
10.1016/j.jcp.2023.112431
-
dc.identifier.articleid
112431
-
dc.identifier.eissn
1090-2716
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.project.funder
Vereine, Stiftungen, Preise
-
crisitem.project.grantno
FQXi-IAF19-03-S1
-
crisitem.author.dept
E141-02 - Forschungsbereich Atom Physics and Quantum Optics
-
crisitem.author.dept
E164-04-3 - Forschungsgruppe Festkörperionik
-
crisitem.author.dept
E141-02 - Forschungsbereich Atom Physics and Quantum Optics