<div class="csl-bib-body">
<div class="csl-entry">Brandstatter, A., Smolka, S. A., Stoller, S. D., Tiwari, A., & Grosu, R. (2023). Multi-Agent Spatial Predictive Control with Application to Drone Flocking. In <i>2023 IEEE International Conference on Robotics and Automation (ICRA)</i> (pp. 1221–1227). IEEE. https://doi.org/10.1109/ICRA48891.2023.10160617</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188265
-
dc.description.abstract
We introduce Spatial Predictive Control (SPC), a technique for solving the following problem: given a collection of robotic agents with black-box positional low-level controllers (PLLCs) and a mission-specific distributed cost function, how can a distributed controller achieve and maintain cost-function minimization without a plant model and only positional observations of the environment? Our fully distributed SPC controller is based strictly on the position of the agent itself and on those of its neighboring agents. This information is used in every time step to compute the gradient of the cost function and to perform a spatial look-ahead to predict the best next target position for the PLLC. Using a simulation environment, we show that SPC outperforms Potential Field Controllers, a related class of controllers, on the drone flocking problem. We also show that SPC works on real hardware, and is therefore able to cope with the potential sim-to-real transfer gap. We demonstrate its performance using as many as 16 Crazyflie 2.1 drones in a number of scenarios, including obstacle avoidance.
en
dc.language.iso
en
-
dc.subject
drone
en
dc.subject
quadcopter
en
dc.subject
distributed controller
en
dc.subject
multiagent spatial predictive control
en
dc.subject
drone flocking problem
en
dc.title
Multi-Agent Spatial Predictive Control with Application to Drone Flocking
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Stony Brook University, United States of America (the)
-
dc.contributor.affiliation
Stony Brook University, United States of America (the)
-
dc.contributor.affiliation
Microsoft (United States), United States of America (the)
-
dc.relation.isbn
979-8-3503-2366-5
-
dc.description.startpage
1221
-
dc.description.endpage
1227
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 IEEE International Conference on Robotics and Automation (ICRA)
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
55
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E191 - Institut für Computer Engineering
-
tuw.publisher.doi
10.1109/ICRA48891.2023.10160617
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0003-2820-4446
-
tuw.event.name
2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
en
tuw.event.startdate
29-05-2023
-
tuw.event.enddate
02-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
London
-
tuw.event.country
GB
-
tuw.event.presenter
Brandstatter, Andreas
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
10
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Stony Brook University
-
crisitem.author.dept
Stony Brook University
-
crisitem.author.dept
Microsoft (United States)
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems