<div class="csl-bib-body">
<div class="csl-entry">Streitberger, J., Bringmann, P., Brunner, M., Miraci, A., & Praetorius, D. (2023, September 4). <i>Cost-optimal goal-oriented adaptive FEM for linear elliptic PDEs</i> [Conference Presentation]. European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023), Lissabon, Portugal. http://hdl.handle.net/20.500.12708/188271</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188271
-
dc.description.abstract
For a given bounded Lipschitz domain and given right-hand side f, we consider the nonsymmetric second-order linear elliptic PDE. We suppose that the PDE satisfies the assumptions of the Lax–Milgram lemma so that the weak formulation of the PDE admits a unique solution. In contrast to standard adaptive FEM that aims to approximate the exact solution on the whole domain, goal-oriented adaptive FEM aims at computing a linear quantity of interest with the help of the so-called dual problem seeks. We formulate and analyze a goal-oriented adaptive finite element algorithm that steers the adaptive mesh refinement, and the inexact iterative solutions of the arising linear systems. While the analysis for symmetric PDEs (with convection b = 0) is considerably less challenging, the iterative solver for the nonsymmetric problem employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the primal and dual problem and, as an inner loop, an optimal geometric multigrid algorithm. We prove that the proposed goal-oriented adaptive iteratively symmetrized finite element method (GAISFEM) leads to full linear convergence and, as our main contribution, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time.
en
dc.language.iso
en
-
dc.subject
optimal computational cost
en
dc.subject
goal-oriented adaptive FEM
en
dc.subject
nonsymmetric PDEs
en
dc.subject
contractive iterative solver
en
dc.title
Cost-optimal goal-oriented adaptive FEM for linear elliptic PDEs
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
tuw.author.orcid
0000-0003-1189-0611
-
tuw.author.orcid
0000-0002-4546-5165
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.event.name
European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023)
en
tuw.event.startdate
04-09-2023
-
tuw.event.enddate
08-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lissabon
-
tuw.event.country
PT
-
tuw.event.presenter
Streitberger, Julian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairetype
Presentation
-
item.openairetype
Vortrag
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.languageiso639-1
en
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing