<div class="csl-bib-body">
<div class="csl-entry">Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023). Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i>, <i>57</i>(4), 2193–2225. https://doi.org/10.1051/m2an/2023036</div>
</div>
-
dc.identifier.issn
2822-7840
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188522
-
dc.description.abstract
We consider scalar semilinear elliptic PDEs where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. We formulate an adaptive iterative linearized finite element method (AILFEM) which steers the local mesh refinement as well as the iterative linearization of the arising nonlinear discrete equations. To this end, we employ a damped Zarantonello iteration so that, in each step of the algorithm, only a linear Poisson-type equation has to be solved. We prove that the proposed AILFEM strategy guarantees convergence with optimal rates, where rates are understood with respect to the overall computational complexity (i.e., the computational time). Moreover, we formulate and test an adaptive algorithm where also the damping parameter of the Zarantonello iteration is adaptively adjusted. Numerical experiments underline the theoretical findings.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
EDP Sciences
-
dc.relation.ispartof
ESAIM: Mathematical Modelling and Numerical Analysis
-
dc.subject
A posteriori error estimation
en
dc.subject
Adaptive iterative linearized finite element method
en
dc.subject
Convergence
en
dc.subject
Cost-optimality
en
dc.subject
Iterative solver
en
dc.subject
Optimal convergence rates
en
dc.subject
Semilinear PDEs
en
dc.title
Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs