<div class="csl-bib-body">
<div class="csl-entry">Scheuchenstuhl, D., Ulmer, S., Resch, F., Berducci, L., & Grosu, R. (2023, May 29). <i>Enhancing Robot Learning through Learned Human-Attention Feature Maps</i> [Poster Presentation]. ICRA 2023 Workshop on effective Representations, Abstractions, and Priors for Robot Learning (Rap4Robots), London, United Kingdom of Great Britain and Northern Ireland (the). https://doi.org/10.34726/4861</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188621
-
dc.identifier.uri
https://doi.org/10.34726/4861
-
dc.description.abstract
Robust and efficient learning remains a challenging problem in robotics, in particular with complex visual inputs. Inspired by human attention mechanism, with which we quickly process complex visual scenes and react to changes in the environment, we think that embedding auxiliary information about focus point into robot learning would enhance efficiency and robustness of the learning process. In this paper, we propose a novel approach to model and emulate the human attention with an approximate prediction model. We then leverage this output and feed it as a structured auxiliary feature map into downstream learning tasks. We validate this idea by learning a prediction model from human-gaze recordings of manual driving in the real world. We test our approach on two learning tasks - object detection and imitation learning. Our experiments demonstrate that the inclusion of predicted human attention leads to improved robustness of the trained models to out-of-distribution samples and faster learning in low-data regime settings. Our work highlights the potential of incorporating structured auxiliary information in representation learning for robotics and opens up new avenues for research in this direction. All code and data are available online.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Robot Learning
en
dc.subject
Autonomous Driving
en
dc.subject
Machine Learning
en
dc.title
Enhancing Robot Learning through Learned Human-Attention Feature Maps
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/4861
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.relation.grantno
101070679
-
dc.type.category
Poster Presentation
-
tuw.project.title
ULTRA-ENERGIEEFFIZIENTE UND SICHERE NEUROMORPHISCHE ERKENNUNG UND VERARBEITUNG AM ENDPUNKT
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.author.orcid
0009-0004-3240-3725
-
tuw.author.orcid
0000-0002-3497-6007
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
ICRA 2023 Workshop on effective Representations, Abstractions, and Priors for Robot Learning (Rap4Robots)
en
tuw.event.startdate
29-05-2023
-
tuw.event.enddate
29-05-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
London
-
tuw.event.country
GB
-
tuw.event.presenter
Scheuchenstuhl, Daniel
-
tuw.event.presenter
Ulmer, Stefan
-
tuw.event.presenter
Resch, Felix
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openaccessfulltext
Open Access
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.openairetype
Presentation
-
item.openairetype
Vortrag
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
101070679
-
crisitem.author.dept
E191 - Institut für Computer Engineering
-
crisitem.author.dept
E191 - Institut für Computer Engineering
-
crisitem.author.dept
TU Wien, Österreich
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems