<div class="csl-bib-body">
<div class="csl-entry">Ricco, S., & Torricelli, A. (2024). A necessary condition for extremality of solutions to autonomous obstacle problems with general growth. <i>Nonlinear Analysis: Real World Applications</i>, <i>76</i>, Article 104005. https://doi.org/10.1016/j.nonrwa.2023.104005</div>
</div>
-
dc.identifier.issn
1468-1218
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188848
-
dc.description.abstract
Let us consider an autonomous obstacle problem on a specific class of admissible functions, where we suppose the Lagrangian satisfies proper hypotheses of convexity and superlinearity at infinity. Our aim is to find a necessary condition for the extremality of the solution, which exists and it is unique, thanks to a primal–dual formulation of the problem. The proof is based on classical arguments of Convex Analysis and on Calculus of Variations’ techniques.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Nonlinear Analysis: Real World Applications
-
dc.subject
Obstacle problem
en
dc.subject
Characterization of solutions
en
dc.subject
Convex analysis
en
dc.subject
Variational inequality
en
dc.subject
General growth
en
dc.title
A necessary condition for extremality of solutions to autonomous obstacle problems with general growth