<div class="csl-bib-body">
<div class="csl-entry">Sun, D., Hu, J., Wu, H., Wu, J., Yang, J., Sheng, Q. Z., & Dustdar, S. (2024). A Comprehensive Survey on Collaborative Data-access Enablers in the IIoT. <i>ACM Computing Surveys</i>, <i>56</i>(2), 1–37. https://doi.org/10.1145/3612918</div>
</div>
-
dc.identifier.issn
0360-0300
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188928
-
dc.description.abstract
The scope of the Industrial Internet of Things (IIoT) has stretched beyond manufacturing to include energy, healthcare, transportation, and all that tomorrow’s smart cities will entail. The realm of IIoT includes smart sensors, actuators, programmable logic controllers, distributed control systems (DCS), embedded devices, supervisory control, and data acquisition systems—all produced by manufacturers for different purposes and with different data structures and formats; designed according to different standards and made to follow different protocols. In this sea of incompatibility, how can we flexibly acquire these heterogeneous data, and how can we uniformly structure them to suit thousands of different applications? In this article, we survey the four pillars of information science that enable collaborative data access in an IIoT—standardization, data acquisition, data fusion, and scalable architecture—to provide an up-to-date audit of current research in the field. Here, standardization in IIoT relies on standards and technologies to make things communicative; data acquisition attempts to transparently collect data through plug-and-play architectures, reconfigurable schemes, or hardware expansion; data fusion refers to the techniques and strategies for overcoming heterogeneity in data formats and sources; and scalable architecture provides basic techniques to support heterogeneous requirements. The article also concludes with an overview of the frontier researches and emerging technologies for supporting or challenging data access from the aspects of 5G, machine learning, blockchain, and semantic web
en
dc.language.iso
en
-
dc.publisher
ASSOC COMPUTING MACHINERY
-
dc.relation.ispartof
ACM Computing Surveys
-
dc.subject
Information Systems
en
dc.subject
Data management systems
en
dc.subject
Computer systems organization
en
dc.subject
Cloud Computing
en
dc.subject
Data flow architectures
en
dc.title
A Comprehensive Survey on Collaborative Data-access Enablers in the IIoT
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Hangzhou Dianzi University, China
-
dc.contributor.affiliation
Hangzhou Dianzi University, China
-
dc.contributor.affiliation
Hangzhou Dianzi University, China
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.description.startpage
1
-
dc.description.endpage
37
-
dcterms.dateSubmitted
2022-05-10
-
dc.type.category
Original Research Article
-
tuw.container.volume
56
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
ACM Computing Surveys
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1145/3612918
-
dc.date.onlinefirst
2023-09-15
-
dc.identifier.articleid
50
-
dc.identifier.eissn
1557-7341
-
dc.description.numberOfPages
37
-
tuw.author.orcid
0000-0002-7332-1169
-
tuw.author.orcid
0000-0002-2056-903X
-
tuw.author.orcid
0000-0002-7189-1205
-
tuw.author.orcid
0000-0002-1371-5801
-
tuw.author.orcid
0000-0002-3326-4147
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.description.sponsorshipexternal
National Key R&D Program of China
-
dc.description.sponsorshipexternal
National Natural Science Foundation of China
-
dc.description.sponsorshipexternal
Science and Technology Program of Zhejiang Province
-
dc.relation.grantnoexternal
Grant 2022YFB3304600
-
dc.relation.grantnoexternal
Grant U21A20484
-
dc.relation.grantnoexternal
Grant 2022C01016
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Hangzhou Dianzi University
-
crisitem.author.dept
Hangzhou Dianzi University
-
crisitem.author.dept
Hangzhou Dianzi University
-
crisitem.author.dept
Macquarie University
-
crisitem.author.dept
Macquarie University
-
crisitem.author.dept
Macquarie University
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-7332-1169
-
crisitem.author.orcid
0000-0002-2056-903X
-
crisitem.author.orcid
0000-0002-7189-1205
-
crisitem.author.orcid
0000-0002-1371-5801
-
crisitem.author.orcid
0000-0002-3326-4147
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering