<div class="csl-bib-body">
<div class="csl-entry">Ceneda, D., Collins, C., El-Assady, M., Miksch, S., Tominski, C., & Arleo, A. (2023). <i>A Heuristic Approach for Dual Expert/End-User Evaluation of Guidance in Visual Analytics</i>. arXiv. https://doi.org/10.34726/5043</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188929
-
dc.identifier.uri
https://doi.org/10.34726/5043
-
dc.description.abstract
Guidance can support users during the exploration and analysis of complex data. Previous research focused on characterizing the theoretical aspects of guidance in visual analytics and implementing guidance in different scenarios. However, the evaluation of guidance-enhanced visual analytics solutions remains an open research question. We tackle this question by introducing and validating a practical evaluation methodology for guidance in visual analytics. We identify eight quality criteria to be fulfilled and collect expert feedback on their validity. To facilitate actual evaluation studies, we derive two sets of heuristics. The first set targets heuristic evaluations conducted by expert evaluators. The second set facilitates end-user studies where participants actually use a guidance-enhanced system. By following such a dual approach, the different quality criteria of guidance can be examined from two different perspectives, enhancing the overall value of evaluation studies. To test the practical utility of our methodology, we employ it in two studies to gain insight into the quality of two guidance-enhanced visual analytics solutions, one being a work-in-progress research prototype, and the other being a publicly available visualization recommender system. Based on these two evaluations, we derive good practices for conducting evaluations of guidance in visual analytics and identify pitfalls to be avoided during such studies.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Guidance
en
dc.subject
Heuristics
en
dc.subject
Evaluation
en
dc.subject
Visual Analytics
en
dc.title
A Heuristic Approach for Dual Expert/End-User Evaluation of Guidance in Visual Analytics
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5043
-
dc.identifier.arxiv
2308.13052
-
dc.contributor.affiliation
University of Ontario Institute of Technology, Canada
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
University of Rostock, Germany
-
dc.relation.grantno
ICT19-47
-
dc.relation.grantno
880883
-
tuw.project.title
Guidance-Enriched Visual Analytics for Temporal Data
-
tuw.project.title
Domain-adaptive Remote sensing Image Analysis with Human-in-the-loop