<div class="csl-bib-body">
<div class="csl-entry">Hunold, S., & Kraßnitzer, K. D. V. (2023). A Quantitative Analysis of OpenMP Task Runtime Systems. In A. Gainaru, C. Zhang, & C. Luo (Eds.), <i>Benchmarking, Measuring, and Optimizing : 14th BenchCouncil International Symposium, Bench 2022, Virtual Event, November 7-9, 2022, Revised Selected Papers</i> (pp. 3–18). Springer. https://doi.org/10.1007/978-3-031-31180-2_1</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188934
-
dc.description.abstract
Although OpenMP is heavily used to parallelize for-loops, it also supports task-parallel programming, which is important for parallelizing irregular applications. In this work, we focus on the performance of OpenMP runtime systems for task-based applications. In particular, we investigate the performance of different OpenMP runtime systems when scheduling a large set independent tasks of different granularity. To that end, we propose a new OpenMP benchmark, which features profiling and tracing options that help developers to reason about the observed performance differences. We compare the execution times measured for a variety of compilers, such as gcc, icc, clang, aocc, and pgcc, for both homogeneous and heterogeneous workloads. Our study shows that there are significant performance differences between the different OpenMP implementations. We also show that the performance attainable with a compiler strongly depends on the machine architecture, the number of threads, the thread-pinning strategy, and the task granularity.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Benchmarking
en
dc.subject
OpenMP tasks
en
dc.subject
Scheduling
en
dc.title
A Quantitative Analysis of OpenMP Task Runtime Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.editoraffiliation
Oak Ridge National Laboratory, USA
-
dc.contributor.editoraffiliation
ETH Zurich, Switzerland
-
dc.contributor.editoraffiliation
Chinese Academy of Sciences, China
-
dc.relation.isbn
978-3-031-31180-2
-
dc.relation.doi
10.1007/978-3-031-31180-2
-
dc.relation.issn
0302-9743
-
dc.description.startpage
3
-
dc.description.endpage
18
-
dc.relation.grantno
P33884-N
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Benchmarking, Measuring, and Optimizing : 14th BenchCouncil International Symposium, Bench 2022, Virtual Event, November 7-9, 2022, Revised Selected Papers
-
tuw.container.volume
13852
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Offline- und Online-Autotuning von Parallelen Programmen
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
90
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E191-04 - Forschungsbereich Parallel Computing
-
tuw.publisher.doi
10.1007/978-3-031-31180-2_1
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-5280-3855
-
tuw.author.orcid
0000-0003-1217-1029
-
tuw.editor.orcid
0000-0002-1375-9468
-
tuw.event.name
14th BenchCouncil International Symposium on Benchmarking, Measuring and Optimizing (Bench 2022)