<div class="csl-bib-body">
<div class="csl-entry">Eiben, E., Ganian, R., Hamm, T., & Korchemna, V. (2023). A Structural Complexity Analysis of Synchronous Dynamical Systems. In B. Williams, Y. Chen, & J. Neville (Eds.), <i>Proceedings of the 37th AAAI Conference on Artificial Intelligence</i> (pp. 6313–6321). AAAI Press. https://doi.org/10.1609/aaai.v37i5.25777</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188935
-
dc.description.abstract
Synchronous dynamical systems are well-established models that have been used to capture a range of phenomena in networks, including opinion diffusion, spread of disease and product adoption. We study the three most notable problems in synchronous dynamical systems: whether the system will transition to a target configuration from a starting configuration, whether the system will reach convergence from a starting configuration, and whether the system is guaranteed to converge from every possible starting configuration. While all three problems were known to be intractable in the classical sense, we initiate the study of their exact boundaries of tractability from the perspective of structural parameters of the network by making use of the more fine-grained parameterized complexity paradigm. As our first result, we consider treewidth - as the most prominent and ubiquitous structural parameter - and show that all three problems remain intractable even on instances of constant treewidth. We complement this negative finding with fixed-parameter algorithms for the former two problems parameterized by treedepth, a well-studied restriction of treewidth. While it is possible to rule out a similar algorithm for convergence guarantee under treedepth, we conclude with a fixed-parameter algorithm for this last problem when parameterized by treedepth and the maximum in-degree.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Proceedings of the ... AAAI Conference on Artificial Intelligence
-
dc.subject
parameterized complexity
en
dc.subject
Exact Algorithms
en
dc.subject
dynamical systems
en
dc.title
A Structural Complexity Analysis of Synchronous Dynamical Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Royal Holloway University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
Utrecht University, Netherlands (the)
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
Royal Holloway University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-57735-880-0
-
dc.relation.issn
2159-5399
-
dc.description.startpage
6313
-
dc.description.endpage
6321
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2374-3468
-
tuw.booktitle
Proceedings of the 37th AAAI Conference on Artificial Intelligence
-
tuw.container.volume
37, 5
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington DC
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1609/aaai.v37i5.25777
-
dc.description.numberOfPages
9
-
tuw.editor.orcid
0000-0001-8108-4899
-
tuw.event.name
Thirty-Seventh AAAI Conference on Artificial Intelligence
en
tuw.event.startdate
07-02-2023
-
tuw.event.enddate
14-02-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Washington DC
-
tuw.event.country
US
-
tuw.event.presenter
Ganian, Robert
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E186 - Institut für Computergraphik und Algorithmen
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity