<div class="csl-bib-body">
<div class="csl-entry">Müller, S., Toborek, V., Beckh, K., Jakobs, M., Bauckhage, C., & Welke, P. (2023). An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), <i>Machine Learning and Knowledge Discovery in Databases: Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III</i> (pp. 462–478). Springer. https://doi.org/10.1007/978-3-031-43418-1_28</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188937
-
dc.description.abstract
The Rashomon Effect describes the following phenomenon: for a given dataset there may exist many models with equally good performance but with different solution strategies. The Rashomon Effect has implications for Explainable Machine Learning, especially for the comparability of explanations. We provide a unified view on three different comparison scenarios and conduct a quantitative evaluation across different datasets, models, attribution methods, and metrics. We find that hyperparameter-tuning plays a role and that metric selection matters. Our results provide empirical support for previously anecdotal evidence and exhibit challenges for both scientists and practitioners.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Explainable ML
en
dc.subject
Interpretable ML
en
dc.subject
Attribution Methods
en
dc.subject
Rashomon Effect
en
dc.subject
Disagreement Problem
en
dc.title
An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Bonn, Germany
-
dc.contributor.affiliation
University of Bonn, Germany
-
dc.contributor.affiliation
Fraunhofer IAIS, Germany
-
dc.contributor.affiliation
TU Dortmund University, Germany
-
dc.contributor.affiliation
University of Bonn, Germany
-
dc.contributor.editoraffiliation
University of Michigan, USA
-
dc.contributor.editoraffiliation
Max-Planck-Gesellschaft, Germany
-
dc.relation.isbn
978-3-031-43418-1
-
dc.description.startpage
462
-
dc.description.endpage
478
-
dc.relation.grantno
ICT22-059
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Machine Learning and Knowledge Discovery in Databases: Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III
-
tuw.container.volume
14171
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1007/978-3-031-43418-1_28
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0002-0778-9695
-
tuw.author.orcid
0009-0009-8372-8251
-
tuw.author.orcid
0000-0002-7824-6647
-
tuw.author.orcid
0000-0003-4607-8957
-
tuw.author.orcid
0000-0001-6615-2128
-
tuw.author.orcid
0000-0002-2123-3781
-
tuw.editor.orcid
0000-0002-3206-8179
-
tuw.editor.orcid
0000-0002-5427-4758
-
tuw.editor.orcid
0000-0003-3930-1161
-
tuw.editor.orcid
0000-0001-9231-467X
-
tuw.editor.orcid
0000-0001-9464-8315
-
tuw.event.name
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2023
en
tuw.event.startdate
18-09-2023
-
tuw.event.enddate
22-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Turin
-
tuw.event.country
IT
-
tuw.event.presenter
Müller, Sebastian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
crisitem.project.grantno
ICT22-059
-
crisitem.author.dept
E020-07 - Fachbereich Software Development
-
crisitem.author.dept
University of Bonn
-
crisitem.author.dept
Fraunhofer IAIS, Germany
-
crisitem.author.dept
TU Dortmund University, Germany
-
crisitem.author.dept
University of Bonn
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0009-0009-8372-8251
-
crisitem.author.orcid
0000-0002-7824-6647
-
crisitem.author.orcid
0000-0003-4607-8957
-
crisitem.author.orcid
0000-0001-6615-2128
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.parentorg
E020 - Information Technology Solutions
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering