<div class="csl-bib-body">
<div class="csl-entry">Xiao, Z., Li, H., Jiang, H., Li, Y., Alazab, M., Zhu, Y., & Dustdar, S. (2023). Predicting Urban Region Heat via Learning Arrive-Stay-Leave Behaviors of Private Cars. <i>IEEE Transactions on Intelligent Transportation Systems</i>, <i>24</i>(10), 10843–10856. https://doi.org/10.1109/TITS.2023.3276704</div>
</div>
-
dc.identifier.issn
1524-9050
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188976
-
dc.description.abstract
Urban region heat refers to the extent of which people congregate in various regions when they travel to and stay in a specified place. Predicting urban region heat facilitates broad applications ranging from location-based services to intelligent transportation management. The region heat is essentially characterized by the ‘arrive-stay-leave (ASL)’ behaviors, while it is a challenging task to well capture the spatial-temporal evolution of region heat since the following issues remain: i) ASL behaviors of private cars is usually heterogeneous resulting in a hierarchical distribution of region heat. ii) Urban region heat contains complex spatial-temporal correlations hidden in ASL behaviors and how to collaboratively integrate them is challenging. To address these challenges, we propose a Hierarchical Spatial-Temporal Network (HierSTNet) to forecast urban region heat, which contains two representations, namely, grid region from micro perspective and node region from macro perspective. For the grids, three-dimension spatial and temporal convolutional network (3D-STCNN) is proposed to model multi-scale properties in temporal dimension of ASL behaviors. For the nodes, multi-head graph attention networks are utilized to model the periodicity and spatial heterogeneity among macro region. Hierarchical structures are designed for multi-view modeling spatial-temporal distribution of ASL behaviors, by which they capture small-scale features in micro regions and embeds the global representation into graph propagation. Finally, we design an interaction decoder layer to integrate the external factors and aggregate spatial-temporal information across hierarchical structures. Extensive experiments based on real-world private car trajectory dataset demonstrate the superiority and effectiveness of proposed framework.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Intelligent Transportation Systems
-
dc.subject
arrive-stay-leave behaviors
en
dc.subject
hierarchical spatial-temporal network
en
dc.subject
private cars
en
dc.subject
trajectory data
en
dc.subject
Urban region heat
en
dc.title
Predicting Urban Region Heat via Learning Arrive-Stay-Leave Behaviors of Private Cars