<div class="csl-bib-body">
<div class="csl-entry">Fichte, J. K., Ganian, R., Hecher, M., Slivovsky, F., & Ordyniak, S. (2023). Structure-Aware Lower Bounds and Broadening the Horizon of Tractability for QBF. In <i>2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)</i> (pp. 1–14). IEEE. https://doi.org/10.1109/LICS56636.2023.10175675</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188978
-
dc.description.abstract
The QSAT problem, which asks to evaluate a quantified Boolean formula (QBF), is of fundamental interest in approximation, counting, decision, and probabilistic complexity and is also considered the prototypical PSPACE-complete problem. As such, it has previously been studied under various structural restrictions (parameters), most notably parameterizations of the primal graph representation of instances. Indeed, it is known that QSAT remains PSPACE-complete even when restricted to instances with constant treewidth of the primal graph, but the problem admits a double-exponential fixed-parameter algorithm parameterized by the vertex cover number (primal graph).However, prior works have left a gap in our understanding of the complexity of QSAT when viewed from the perspective of other natural representations of instances, most notably via incidence graphs. In this paper, we develop structure-aware reductions which allow us to obtain essentially tight lower bounds for highly restricted instances of QSAT, including instances whose incidence graphs have bounded treedepth or feedback vertex number. We complement these lower bounds with novel algorithms for QSAT which establish a nearly-complete picture of the problem's complexity under standard graph-theoretic parameterizations. We also show implications for other natural graph representations, and obtain novel upper as well as lower bounds for QSAT under more fine-grained parameterizations of the primal graph.
en
dc.language.iso
en
-
dc.subject
lower bounds
en
dc.subject
parameterized complexity
en
dc.subject
Exact Algorithms
en
dc.subject
Quantified Boolean Formulas
en
dc.title
Structure-Aware Lower Bounds and Broadening the Horizon of Tractability for QBF
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Linköping University, Sweden
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.contributor.affiliation
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
9798350335873
-
dc.description.startpage
1
-
dc.description.endpage
14
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1109/LICS56636.2023.10175675
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0002-8681-7470
-
tuw.author.orcid
0000-0003-0131-6771
-
tuw.event.name
Logic in Computer Science 2023
en
tuw.event.startdate
26-06-2023
-
tuw.event.enddate
29-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Boston
-
tuw.event.country
US
-
tuw.event.presenter
Fichte, Johannes K.
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity