<div class="csl-bib-body">
<div class="csl-entry">Eiben, E., Ganian, R., & Kanj, I. (2023). The Parameterized Complexity of Coordinated Motion Planning. In E. Chambers & J. Gudmundsson (Eds.), <i>39th International Symposium on Computational Geometry, SoCG 2023</i> (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2023.28</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188984
-
dc.description.abstract
In Coordinated Motion Planning (CMP), we are given a rectangular-grid on which k robots occupy k distinct starting gridpoints and need to reach k distinct destination gridpoints. In each time step, any robot may move to a neighboring gridpoint or stay in its current gridpoint, provided that it does not collide with other robots. The goal is to compute a schedule for moving the k robots to their destinations which minimizes a certain objective target - prominently the number of time steps in the schedule, i.e., the makespan, or the total length traveled by the robots. We refer to the problem arising from minimizing the former objective target as CMP-M and the latter as CMP-L. Both CMP-M and CMP-L are fundamental problems that were posed as the computational geometry challenge of SoCG 2021, and CMP also embodies the famous (n2 − 1)-puzzle as a special case. In this paper, we settle the parameterized complexity of CMP-M and CMP-L with respect to their two most fundamental parameters: the number of robots, and the objective target. We develop a new approach to establish the fixed-parameter tractability of both problems under the former parameterization that relies on novel structural insights into optimal solutions to the problem. When parameterized by the objective target, we show that CMP-L remains fixed-parameter tractable while CMP-M becomes para-NP-hard. The latter result is noteworthy, not only because it improves the previously-known boundaries of intractability for the problem, but also because the underlying reduction allows us to establish - as a simpler case - the NP-hardness of the classical Vertex Disjoint and Edge Disjoint Paths problems with constant path-lengths on grids.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
dc.subject
coordinated motion planning
en
dc.subject
disjoint paths on grids
en
dc.subject
multi-agent path finding
en
dc.subject
parameterized complexity
en
dc.title
The Parameterized Complexity of Coordinated Motion Planning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
DePaul University, USA
-
dc.contributor.editoraffiliation
Saint Louis University, USA
-
dc.contributor.editoraffiliation
University of Sydney, Australia
-
dc.relation.isbn
9783959772730
-
dc.relation.issn
1868-8969
-
dc.description.startpage
1
-
dc.description.endpage
16
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
39th International Symposium on Computational Geometry, SoCG 2023
-
tuw.container.volume
258
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
-
tuw.relation.publisherplace
Dagstuhl
-
tuw.book.chapter
28
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publisher.doi
10.4230/LIPIcs.SoCG.2023.28
-
dc.description.numberOfPages
16
-
tuw.editor.orcid
0000-0001-8333-3676
-
tuw.editor.orcid
0000-0002-6778-7990
-
tuw.event.name
39th International Symposium on Computational Geometry
en
tuw.event.startdate
12-07-2023
-
tuw.event.enddate
15-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Dallas
-
tuw.event.country
US
-
tuw.event.presenter
Ganian, Robert
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E186 - Institut für Computergraphik und Algorithmen
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity