DC Field
Value
Language
dc.contributor.author
Letz, Theresa
-
dc.contributor.author
Hörandtner, Carina
-
dc.contributor.author
Braunisch, Matthias C.
-
dc.contributor.author
Gundel, Peter
-
dc.contributor.author
Matschkal, Julia
-
dc.contributor.author
Bachler, Martin
-
dc.contributor.author
Lorenz, Georg
-
dc.contributor.author
Körner, Andreas
-
dc.contributor.author
Schaller, Carolin
-
dc.contributor.author
Lattermann, Moritz
-
dc.contributor.author
Holzinger, Andreas
-
dc.contributor.author
Heemann, Uwe
-
dc.contributor.author
Wassertheurer, Siegfried
-
dc.contributor.author
Schmaderer, Christoph
-
dc.contributor.author
Mayer, Christopher C
-
dc.date.accessioned
2023-10-25T06:38:30Z
-
dc.date.available
2023-10-25T06:38:30Z
-
dc.date.issued
2023-07-10
-
dc.identifier.citation
<div class="csl-bib-body">
<div class="csl-entry">Letz, T., Hörandtner, C., Braunisch, M. C., Gundel, P., Matschkal, J., Bachler, M., Lorenz, G., Körner, A., Schaller, C., Lattermann, M., Holzinger, A., Heemann, U., Wassertheurer, S., Schmaderer, C., & Mayer, C. C. (2023). Automatic ECG-based detection of left ventricular hypertrophy and its predictive value in haemodialysis patients. <i>Physiological Measurement</i>, <i>44</i>(7), Article 075002. https://doi.org/10.1088/1361-6579/acdfb3</div>
</div>
-
dc.identifier.issn
0967-3334
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189205
-
dc.description.abstract
Objective.Left ventricular hypertrophy (LVH) is one of the most severe risk factors in patients with end-stage kidney disease (ESKD) regarding all-cause and cardiovascular mortality. It contributes to the risk of sudden cardiac death which accounts for approximately 25% of deaths in ESKD patients. Electrocardiography (ECG) is the least expensive way to assess whether a patient has LVH, but manual annotation is cumbersome. Thus, an automated approach has been developed to derive ECG-based LVH parameters. The aim of the current study is to compare automatic to manual measurements and to investigate their predictive value for cardiovascular and all-cause mortality.Approach.From the 12-lead 24 h ECG measurements of 301 ESKD patients undergoing haemodialysis, three different LVH parameters were calculated. Peguero-Lo Presti voltage, Cornell voltage, and Sokolow-Lyon voltage were automatically derived and compared to the manual annotations. To determine the agreement between manual and automatic measurements and their predictive value, Bland-Altman plots were created and Cox regression analysis for cardiovascular and all-cause mortality was performed.Main results.The median values for the automatic assessment were: Peguero-Lo Presti voltage 1.76 mV (IQR 1.29-2.55), Cornell voltage 1.14 mV (IQR 0.721-1.66), and Sokolow-Lyon voltage 1.66 mV (IQR 1.08-2.23). The mean differences when compared to the manual measurements were -0.027 mV (0.21 SD), 0.027 mV (0.13 SD) and -0.025 mV (0.24 SD) for Peguero-Lo Presti, Cornell, and Sokolow-Lyon voltage, respectively. The categorial LVH detection based on pre-defined thresholds differed in only 13 cases for all indices between manual and automatic assessment. Proportional hazard ratios only differed slightly in categorial LVH detection between manually and automatically determined LVH parameters; no differences could be found for continuous parameters.Significance.This study provides evidence that automatic algorithms can be as reliable in LVH parameter assessment and risk prediction as manual measurements in ESKD patients undergoing haemodialysis.
en
dc.language.iso
en
-
dc.publisher
IOP PUBLISHING LTD
-
dc.relation.ispartof
Physiological Measurement
-
dc.subject
Cornell voltage
en
dc.subject
Peguero-Lo Presti voltage
en
dc.subject
Sokolow–Lyon voltage
en
dc.subject
automatic measurements
en
dc.subject
cardiovascular mortality
en
dc.subject
left ventricular hypertrophy
en
dc.title
Automatic ECG-based detection of left ventricular hypertrophy and its predictive value in haemodialysis patients
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.pmid
37336235
-
dc.identifier.scopus
2-s2.0-85164250785
-
dc.identifier.url
https://api.elsevier.com/content/abstract/scopus_id/85164250785
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
BOKU University, Austria
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.contributor.affiliation
Technical University Munich, Germany
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.type.category
Original Research Article
-
tuw.container.volume
44
-
tuw.container.issue
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Physiological Measurement
-
tuw.publication.orgunit
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
tuw.publisher.doi
10.1088/1361-6579/acdfb3
-
dc.identifier.articleid
075002
-
dc.identifier.eissn
1361-6579
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0002-2522-9579
-
tuw.author.orcid
0000-0001-7116-1707
-
tuw.author.orcid
0000-0002-6786-5194
-
tuw.author.orcid
0000-0002-5612-5481
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
none
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
E363 - Institut für Biomedizinische Elektronik
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
E060-03-1 - Fachgruppe Blended Learning - Methods and Applications
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
E192 - Institut für Logic and Computation
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
E363 - Institut für Biomedizinische Elektronik
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
E363 - Institut für Biomedizinische Elektronik
-
crisitem.author.orcid
0000-0001-7116-1707
-
crisitem.author.orcid
0000-0002-6786-5194
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E060-03 - Fachbereich Studieneingangs- und erfolgsmanagement
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
Appears in Collections: