<div class="csl-bib-body">
<div class="csl-entry">Krešić, I., & Ackemann, T. (2023). Quantum enhanced SU(1,1) matter-wave interferometry in a ring cavity. <i>Physical Review A</i>, <i>108</i>(4), Article 043302. https://doi.org/10.1103/PhysRevA.108.043302</div>
</div>
-
dc.identifier.issn
2469-9926
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189332
-
dc.description.abstract
Quantum squeezed states offer metrological enhancement as compared to their classical counterparts. Here, we devise and numerically explore a method for performing SU(1,1) interferometry beyond the standard quantum limit, using quasi-cyclic nonlinear wave mixing dynamics of ultracold atoms in a ring cavity. The method is based on generating quantum correlations between many atoms via photon-mediated optomechanical interaction. Timescales of the interferometer operation are here given by the inverse of photonic recoil frequency, and are orders of magnitude shorter than the timescales of collisional spin mixing–based interferometers. Such shorter timescales should enable not only faster measurement cycles but also lower atomic losses from the trap during measurement, which may lead to significant quantum metrological gain in matter-wave interferometry with state-of-the-art cavity setups.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Österr. Akademie der Wissenschaften
-
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review A
-
dc.subject
quantum entanglement
en
dc.subject
quantum metrology
en
dc.subject
ultracold atoms
en
dc.subject
cavity QED
en
dc.title
Quantum enhanced SU(1,1) matter-wave interferometry in a ring cavity
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Strathclyde, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.grantno
M 3011
-
dc.relation.grantno
ESQ-Kresic
-
dc.type.category
Original Research Article
-
tuw.container.volume
108
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Lichtausbreitung in der nicht-hermitischen Photonik
-
tuw.project.title
Selbstorganisation von ultrakalten Atomen für die kommenden Quantentechnologien