<div class="csl-bib-body">
<div class="csl-entry">Casas, E., Dominguez Corella, A., & Jork, N. A. (2023). New Assumptions for Stability Analysis in Elliptic Optimal Control Problems. <i>SIAM Journal on Control and Optimization</i>, <i>61</i>(3), 1394–1414. https://doi.org/10.1137/22M149199X</div>
</div>
-
dc.identifier.issn
0363-0129
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189334
-
dc.description.abstract
This paper is dedicated to the stability analysis of the optimal solutions of a control problem associated with a semilinear elliptic equation. The linear differential operator of the equation is neither monotone nor coercive due to the presence of a convection term. The control appears only linearly, or may not even appear explicitly in the objective functional. Under new assumptions, we prove Lipschitz stability of the optimal controls and associated states with respect to not only perturbations in the equation and the objective functional but also the Tikhonov regularization parameter.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Control and Optimization
-
dc.subject
optimality conditions
en
dc.subject
semilinear elliptic equations
en
dc.subject
stability analysis
en
dc.subject
Tikhonov regularization
en
dc.title
New Assumptions for Stability Analysis in Elliptic Optimal Control Problems