<div class="csl-bib-body">
<div class="csl-entry">Gregorovič, J., & Zalabová, L. (2023). First BGG operators on homogeneous conformal geometries. <i>Classical and Quantum Gravity</i>, <i>40</i>(6), Article 065010. https://doi.org/10.1088/1361-6382/acbc05</div>
</div>
-
dc.identifier.issn
0264-9381
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189479
-
dc.description.abstract
We study first BGG operators and their solutions on homogeneous conformal geometries. We focus on conformal Killing tensors, conformal Killing-Yano forms and twistor spinors in particular. We develop an invariant calculus that allows us to find solutions explicitly using only algebraic computations. We also discuss applications to holonomy reductions and conserved quantities of conformal circles. We demonstrate our result on examples of homogeneous conformal geometries coming mostly from general relativity.
en
dc.language.iso
en
-
dc.publisher
IOP PUBLISHING LTD
-
dc.relation.ispartof
Classical and Quantum Gravity
-
dc.subject
conformal circles
en
dc.subject
conformal Killing tensors
en
dc.subject
conformal Killing-Yano forms
en
dc.subject
first BGG operator
en
dc.subject
Gödel metric
en
dc.subject
homogeneous conformal geometry
en
dc.subject
twistor spinors
en
dc.title
First BGG operators on homogeneous conformal geometries