<div class="csl-bib-body">
<div class="csl-entry">Iglesias Vazquez, F., Zseby, T., Hartl, A., & Zimek, A. (2023). SDOclust: Clustering with Sparse Data Observers. In O. Pedreira & V. Estivill-Castro (Eds.), <i>Similarity Search and Applications : 16th International Conference, SISAP 2023, A Coruña, Spain, October 9–11, 2023, Proceedings</i> (pp. 185–199). Springer. https://doi.org/10.1007/978-3-031-46994-7_16</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189492
-
dc.description.abstract
Sparse Data Observers (SDO) is an unsupervised learning approach developed to cover the need for fast, highly interpretable and intuitively parameterizable anomaly detection. We present SDOclust, an extension that performs clustering while preserving the simplicity and applicability of the original approach. In a nutshell, SDOclust considers
observers as graph nodes and applies local thresholding to divide the obtained graph into clusters; later on, observers' labels are propagated to data points following the observation principle. We tested SDOclust with multiple datasets for clustering evaluation by using no input parameters (default or self-tuned) and nevertheless obtaining outstanding performances. SDOclust is a powerful option when statistical estimates are representative and feature spaces conform distance-based analysis. Its main characteristics are: lightweight, intuitive, self-adjusted, noise-resistant, able to extract non-convex clusters, and built on robust parameters and interpretable models. Feasibility and rapid integration into real-world applications are the core goals behind the design of SDOclust.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
clustering
en
dc.subject
graphs
en
dc.subject
unsupervised learning
en
dc.subject
anomalies
en
dc.title
SDOclust: Clustering with Sparse Data Observers
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Southern Denmark, Denmark
-
dc.contributor.editoraffiliation
Universidade da Coruña, Spain
-
dc.contributor.editoraffiliation
Pompeu Fabra University, Spain
-
dc.relation.isbn
978-3-031-46994-7
-
dc.relation.doi
10.1007/978-3-031-46994-7
-
dc.relation.issn
0302-9743
-
dc.description.startpage
185
-
dc.description.endpage
199
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Similarity Search and Applications : 16th International Conference, SISAP 2023, A Coruña, Spain, October 9–11, 2023, Proceedings
-
tuw.container.volume
14289
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
tuw.linking
https://github.com/CN-TU/pysdoclust
-
tuw.publication.orgunit
E389-01 - Forschungsbereich Networks
-
tuw.publisher.doi
10.1007/978-3-031-46994-7_16
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0001-6081-969X
-
tuw.author.orcid
0000-0002-5391-467X
-
tuw.author.orcid
0000-0003-4376-9605
-
tuw.author.orcid
0000-0001-7713-4208
-
tuw.editor.orcid
0000-0001-7775-0780
-
tuw.event.name
16th SISAP 2023: International Conference on Similarity Search and Applications