<div class="csl-bib-body">
<div class="csl-entry">Piccolotto, N., Bogl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., Schmidt, J., & Miksch, S. (2023). Data Type Agnostic Visual Sensitivity Analysis. <i>IEEE Transactions on Visualization and Computer Graphics</i>. https://doi.org/10.1109/TVCG.2023.3327203</div>
</div>
-
dc.identifier.issn
1077-2626
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189533
-
dc.description.abstract
Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to popular non-spatial methods, like PCA. However, a challenge to its practical use is setting two complex tuning parameters, which requires parameter space analysis. In this paper, we focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial data, which makes SA difficult as few SA approaches in the literature assume such complex data on both sides of the model. Based on the requirements in our design study with statistics experts, we developed a visual analytics prototype for data type agnostic visual sensitivity analysis that fits SBSS and other contexts. The main advantage of our approach is that it requires only dissimilarity measures for parameter settings and outputs (Fig. 1). We evaluated the prototype heuristically with visualization experts and through interviews with two SBSS experts. In addition, we show the transferability of our approach by applying it to microclimate simulations. Study participants could confirm suspected and known parameter-output relations, find surprising associations, and identify parameter subspaces to examine in the future. During our design study and evaluation, we identified challenging future research opportunities.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
Institute of Electrical and Electronics Engineers (IEEE)
-
dc.relation.ispartof
IEEE Transactions on Visualization and Computer Graphics
-
dc.subject
visual analytics
en
dc.subject
parameter space analysis
en
dc.subject
sensitivity analysis
en
dc.subject
spatial blind source separation
en
dc.title
Data Type Agnostic Visual Sensitivity Analysis
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.pmid
37922175
-
dc.identifier.arxiv
2309.03580
-
dc.contributor.affiliation
University of Jyväskylä, Finland
-
dc.contributor.affiliation
VRVis (Austria), Austria
-
dc.relation.grantno
P 31881-N32
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Blind Source Separation in Time and Space
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Visualization and Computer Graphics