<div class="csl-bib-body">
<div class="csl-entry">Casamayor Pujol, V., Morichetta, A., & Nastic, S. (2023). Intelligent Sampling: A Novel Approach to Optimize Workload Scheduling in Large-Scale Heterogeneous Computing Continuum. In <i>Proceedings : 17th IEEE International Conference on Service-Oriented System Engineering (IEEE SOSE 2023)</i> (pp. 140–149). IEEE. https://doi.org/10.1109/SOSE58276.2023.00024</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189535
-
dc.description.abstract
Scheduling workloads on large-scale infrastructures, such as in the Edge-Cloud continuum is a challenging task. Usually, the scheduling algorithm considers only a limited sample of the infrastructure nodes, typically obtained through random sampling. The sampling reduces the number of nodes, which need to be evaluated in the scheduling pipeline, making the scheduling process more saleable. Unfortunately, current sampling approaches become largely inefficient when the infrastructure is heterogeneous and specific, scarce node characteristics are required to successfully execute a workload. Computing continuum infrastructures are heterogeneous, hence, we need to re-think the sampling process to keep it viable at scale while also being able to identify and leverage the heterogeneity of the Edge-Cloud continuum resources. In this article, we present Intelligent Sampling - a novel technique for improving sampling in large-scale and heterogeneous infrastructures. We develop a model for any heterogeneous infrastructure. Based on this model, we provide a method to sample the infrastructure nodes more accurately, considering the specific task at hand. Finally, we leverage the Alibaba PAI dataset to show that our approach is 2.5x times more accurate compared with other state-of-the-art sampling mechanisms while retaining comparable performance and scalability.
en
dc.language.iso
en
-
dc.subject
Computing continuum
en
dc.subject
Intelligent sampling
en
dc.subject
Workloads scheduling
en
dc.subject
Heterogeneous infrastructure model
en
dc.title
Intelligent Sampling: A Novel Approach to Optimize Workload Scheduling in Large-Scale Heterogeneous Computing Continuum
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-2239-2
-
dc.relation.doi
10.1109/SOSE58276.2023
-
dc.relation.issn
2640-8228
-
dc.description.startpage
140
-
dc.description.endpage
149
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2642-6587
-
tuw.booktitle
Proceedings : 17th IEEE International Conference on Service-Oriented System Engineering (IEEE SOSE 2023)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/SOSE58276.2023.00024
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-2830-8368
-
tuw.author.orcid
0000-0003-3765-3067
-
tuw.author.orcid
0000-0003-0410-6315
-
tuw.event.name
17th IEEE International Conference on Service-Oriented System Engineering (IEEE SOSE 2023)
en
tuw.event.startdate
17-07-2023
-
tuw.event.enddate
20-07-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athens
-
tuw.event.country
GR
-
tuw.event.presenter
Casamayor Pujol, Victor
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0003-2830-8368
-
crisitem.author.orcid
0000-0003-3765-3067
-
crisitem.author.orcid
0000-0003-0410-6315
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering