<div class="csl-bib-body">
<div class="csl-entry">Beheshti, A., Yang, J., Sheng, Q. Z., Benatallah, B., Casati, F., Dustdar, S., Motahari-Nezhad, H.-R., Zhang, X., & Xue, S. (2023). ProcessGPT: Transforming Business Process Management with Generative Artificial Intelligence. In C. Ardagna, B. Benatallah, H. Bian, C. K. Chang, Chang Rong N., J. Fan, G. Fox, Z. Jin, X. Liu, H. Ludwig, Michael Sheng, & J. Yang (Eds.), <i>Proceedings. IEEE International Conference on Web Services (IEEE ICWS 2023)</i> (pp. 731–739). IEEE. https://doi.org/10.1109/ICWS60048.2023.00099</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189540
-
dc.description.abstract
Generative Pre-trained Transformer (GPT) is a state-of-the-art machine learning model capable of generating human-like text through natural language processing (NLP). GPT is trained on massive amounts of text data and uses deep learning techniques to learn patterns and relationships within the data, enabling it to generate coherent and contextually appropriate text. This position paper proposes using GPT technology to generate new process models when/if needed. We introduce ProcessGPT as a new technology that has the potential to enhance decision-making in data-centric and knowledge-intensive processes. ProcessGPT can be designed by training a generative pre-trained transformer model on a large dataset of business process data. This model can then be fine-tuned on specific process domains and trained to generate process flows and make decisions based on context and user input. The model can be integrated with NLP and machine learning techniques to provide insights and recommendations for process improvement. Furthermore, the model can automate repetitive tasks and improve process efficiency while enabling knowledge workers to communicate analysis findings, support evidence, and make decisions. ProcessGPT can revolutionize business process management (BPM) by offering a powerful tool for process automation and improvement. Finally, we demonstrate how ProcessGPT can be a powerful tool for augmenting data engineers in maintaining data ecosystem processes within large bank organizations. Our scenario highlights the potential of this approach to improve efficiency, reduce costs, and enhance the quality of business operations through the automation of data-centric and knowledge-intensive processes. These results underscore the promise of ProcessGPT as a transformative technology for organizations looking to improve their process workflows.
en
dc.language.iso
en
-
dc.subject
Business Process Management
en
dc.subject
Data-Centric Processes
en
dc.subject
Generative AI
en
dc.subject
Generative Pre-trained Transformer
en
dc.subject
Knowledge-Intensive Processes
en
dc.title
ProcessGPT: Transforming Business Process Management with Generative Artificial Intelligence
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Dublin City University, Ireland
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Macquarie University, Australia
-
dc.relation.isbn
979-8-3503-0485-5
-
dc.relation.doi
10.1109/ICWS60048.2023
-
dc.relation.issn
2836-3876
-
dc.description.startpage
731
-
dc.description.endpage
739
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2836-3868
-
tuw.booktitle
Proceedings. IEEE International Conference on Web Services (IEEE ICWS 2023)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/ICWS60048.2023.00099
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-5988-5494
-
tuw.author.orcid
0000-0002-3326-4147
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.author.orcid
0000-0002-6259-5359
-
tuw.editor.orcid
0000-0001-6734-7082
-
tuw.editor.orcid
0000-0003-1017-1391
-
tuw.editor.orcid
0000-0002-3326-4147
-
tuw.event.name
2023 IEEE International Conference on Web Services (ICWS)
en
dc.description.sponsorshipexternal
Centre for Applied Artificial Intelligence, Macquarie University, Sydney, Australia
-
tuw.event.startdate
02-07-2023
-
tuw.event.enddate
08-07-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Chicago
-
tuw.event.country
US
-
tuw.event.presenter
Beheshti, Amin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University
-
crisitem.author.dept
Dublin City University, Ireland
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.dept
Macquarie University, Australia
-
crisitem.author.orcid
0000-0002-5988-5494
-
crisitem.author.orcid
0000-0002-3326-4147
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.orcid
0000-0002-6259-5359
-
crisitem.author.orcid
0000-0002-9123-5133
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering