<div class="csl-bib-body">
<div class="csl-entry">Arnold, A. (2023, November 9). <i>Short- and long-time behavior in evolution equations: the role of the hypocoercivity index</i> [Presentation]. Particle Systems and PDEs XI, Lisbon, Portugal. http://hdl.handle.net/20.500.12708/189585</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189585
-
dc.description.abstract
The "index of hypocoercivity" is defined via a coercivity-type estimate for the self-adjoint/skew-adjoint parts of the generator, and it quantifies `how degenerate' a hypocoercive evolution equation is, both for ODEs and for evolutions equations in a Hilbert space. We show that this index characterizes the polynomial decay of the propagator norm for short time and illustrate these concepts for the Lorentz kinetic equation on a torus. This talk is based on joint work with F. Achleitner, E. Carlen, E. Nigsch, and V. Mehrmann.
en
dc.language.iso
en
-
dc.subject
short-time behavior of partial differential equations
en
dc.title
Short- and long-time behavior in evolution equations: the role of the hypocoercivity index
Centro de Matemática (University of Minho), Centro de Análise Matemática, Geometria e Sistemas Dinâmicos (University of Lisbon), Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (University of Lisbon), and Université Côte d'Azur (France)