<div class="csl-bib-body">
<div class="csl-entry">Colesanti, A., Ludwig, M., & Mussnig, F. (2023). The Hadwiger theorem on convex functions, IV: The Klain approach. <i>Advances in Mathematics</i>, <i>413</i>, Article 108832. https://doi.org/10.1016/j.aim.2022.108832</div>
</div>
-
dc.identifier.issn
0001-8708
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189643
-
dc.description.abstract
New proofs of the Hadwiger theorem for smooth and for continuous valuations on convex functions are obtained, and the Klain–Schneider theorem on convex functions is established. In addition, an extension theorem for valuations defined on functions with lower dimensional domain is proved, and its connection to the Abel transform is explained.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Advances in Mathematics
-
dc.subject
Convex function
en
dc.subject
Hadwiger theorem
en
dc.subject
Klain-Schneider theorem
en
dc.subject
Valuation
en
dc.title
The Hadwiger theorem on convex functions, IV: The Klain approach