<div class="csl-bib-body">
<div class="csl-entry">Cancès, C., Herda, M., & Massimini, A. (2023). Finite Volumes for a Generalized Poisson-Nernst-Planck System with Cross-Diffusion and Size Exclusion. In E. Franck, J. Fuhrmann, V. Michel-Dansac, & L. Navoret (Eds.), <i>Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems</i> (pp. 57–73). Springer. https://doi.org/10.1007/978-3-031-40864-9_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189663
-
dc.description.abstract
We present two finite volume approaches for modeling the diffusion of charged particles, specifically ions, in constrained geometries using a degenerate Poisson-Nernst-Planck system with cross-diffusion and volume filling. Both methods utilize a two-point flux approximation and are part of the exponentially fitted scheme framework. The only difference between the two is the selection of a Stolarsky mean for the drift term originating from a self-consistent electric potential. The first version of the scheme, referred to as (SQRA), uses a geometric mean and is an extension of the squareroot approximation scheme. The second scheme, (SG), utilizes an inverse logarithmic mean to create a generalized version of the Scharfetter-Gummel scheme. Both approaches ensure the decay of some discrete free energy. Classical numerical analysis results—existence of discrete solution, convergence of the scheme as the grid size and the time step go to 0—follow. Numerical simulations show that both schemes are effective for moderate Debye lengths, with the (SG) scheme demonstrating greater robustness in the small Debye length limit.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Springer Proceedings in Mathematics & Statistics
-
dc.subject
Cross-diffusion
en
dc.subject
Drift-diffusion
en
dc.subject
Exponential fitting
en
dc.subject
Free energy decay
en
dc.title
Finite Volumes for a Generalized Poisson-Nernst-Planck System with Cross-Diffusion and Size Exclusion
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Université de Lille, France
-
dc.contributor.affiliation
Université de Lille, France
-
dc.relation.isbn
978-3-031-40864-9
-
dc.description.startpage
57
-
dc.description.endpage
73
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems