<div class="csl-bib-body">
<div class="csl-entry">Riehl, K., Neunteufel, M., & Hemberg, M. (2023). Hierarchical confusion matrix for classification performance evaluation. <i>Journal of the Royal Statistical Society: Series C</i>, Article qlad057. https://doi.org/10.1093/jrsssc/qlad057</div>
</div>
-
dc.identifier.issn
0035-9254
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189664
-
dc.description.abstract
This study proposes the novel concept of hierarchical confusion matrix, opening the door for popular confusion-matrix-based (flat) evaluation measures from binary classification problems, while considering the peculiarities of hierarchical classification problems. The concept is developed to a generalised form and proven its applicability to all types of hierarchical classification problems including directed acyclic graphs, multi-path labelling, and non-mandatory leaf-node prediction. Finally, measures based on the novel confusion matrix are used for three real-world hierarchical classification applications and compared to established evaluation measures. The results, the conformity with important attributes of hierarchical classification schemes and its broad applicability justify its recommendation.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Journal of the Royal Statistical Society: Series C
-
dc.subject
evaluation metrics
en
dc.subject
hierarchical classification problems
en
dc.subject
hierarchical confusion matrix
en
dc.title
Hierarchical confusion matrix for classification performance evaluation
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Cambridge, United Kingdom
-
dc.contributor.affiliation
Harvard University, United States of America (the)
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of the Royal Statistical Society: Series C
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
tuw.publisher.doi
10.1093/jrsssc/qlad057
-
dc.date.onlinefirst
2023-07-03
-
dc.identifier.articleid
qlad057
-
dc.identifier.eissn
1467-9876
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0003-4620-8379
-
tuw.author.orcid
0000-0002-7039-387X
-
tuw.author.orcid
0000-0001-8895-5239
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Cambridge, United Kingdom
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
Harvard University
-
crisitem.author.orcid
0000-0003-4620-8379
-
crisitem.author.orcid
0000-0002-7039-387X
-
crisitem.author.orcid
0000-0001-8895-5239
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling