<div class="csl-bib-body">
<div class="csl-entry">Eichinger, B. (2023). Necessary and Sufficient conditions for Universality limits. In <i>Book of abstracts : International Conference on Spectral Theory and Approximation</i> (pp. 3–3).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189665
-
dc.description.abstract
In this talk I present necessary and sufficient conditions for universality limits for orthogonal polynomials on the real line. One of our results is that the Christoffel-Darboux kernel has sine kernel asymptotics at a point ξ, with regularly varying scaling, if and only if the orthogonality measure (spectral measure) has a unique tangent measure at ξ and that is the Lebesgue measure. This includes all prior results with absolutely continuous or singular measures. In fact, sine kernel asymptotics is a special case of a more general theory which also includes hard edge universality limits; we show that the Christoffel-Darboux kernel has a regularly varying scaling limit if and only if the orthogonality measure has a unique tangent measure at ξ and that is not the point mass at ξ. In this case the limit kernel is expressible in terms of confluent hypergeometric functions. This talk is based on a joint work in progress with Milivoje Lukic and Harald Woracek.
en
dc.language.iso
en
-
dc.subject
universality limits
en
dc.subject
orthogonal polynomials
en
dc.subject
canonical systems
en
dc.title
Necessary and Sufficient conditions for Universality limits
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
3
-
dc.description.endpage
3
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Book of abstracts : International Conference on Spectral Theory and Approximation
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-01 - Forschungsbereich Analysis
-
dc.description.numberOfPages
1
-
tuw.event.name
International Conference on Spectral Theory and Approximation 2023
en
tuw.event.startdate
14-08-2023
-
tuw.event.enddate
18-08-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lund
-
tuw.event.country
SE
-
tuw.event.institution
Lund University, Campus LTH, Sweden
-
tuw.event.presenter
Eichinger, Benjamin
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
restricted
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing