<div class="csl-bib-body">
<div class="csl-entry">Howind, S., & Sauter, T. (2023). Modeling Energy Consumption of Industrial Processes with Seq2Seq Machine Learning. In <i>2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE)</i> (pp. 1–4). IEEE. https://doi.org/10.1109/ISIE51358.2023.10228118</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189696
-
dc.description.abstract
Energy considerations in production planning are gaining importance due to concerns over the climate change, but also because of the explosion of energy costs in the recent past. With increasing share of renewables, energy prices are changing over the day, and it thus seems evident to include the cost of energy as an optimization parameter in production planning. However, this requires to estimate the load profile of a given production plan, which in turn requires knowledge of the energy consumption of individual process steps. As the energy consumption of machines often depends on the concrete sequence of states, a straightforward modeling is not possible. In this paper, we investigate the use of machine learning to derive a black-box model from accessible energy measurement data and a known production plan. Preliminary results show that the Seq2Seq method is a promising candidate.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Industrial electronics
en
dc.subject
Energy consumption
en
dc.subject
Renewable energy sources
en
dc.subject
Costs
en
dc.subject
Production planning
en
dc.subject
Production
en
dc.subject
Machine learning
en
dc.title
Modeling Energy Consumption of Industrial Processes with Seq2Seq Machine Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-9971-4
-
dc.relation.doi
10.1109/ISIE51358.2023
-
dc.description.startpage
1
-
dc.description.endpage
4
-
dc.relation.grantno
881136
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE)
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.project.title
Optimierung von industriellen Produktionsprozessen für eine Versorgung mit 100% erneuerbaren Energien
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
E6
-
tuw.researchTopic.name
Sustainable Production and Technologies
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publisher.doi
10.1109/ISIE51358.2023.10228118
-
dc.description.numberOfPages
4
-
tuw.event.name
2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE)
en
tuw.event.startdate
19-06-2023
-
tuw.event.enddate
21-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Helsinki
-
tuw.event.country
FI
-
tuw.event.presenter
Howind, Simon
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH