<div class="csl-bib-body">
<div class="csl-entry">Thiessen, M., & Gärtner, T. (2021). Active Learning of Convex Halfspaces on Graphs. In <i>Advances in Neural Information Processing Systems 34 (NeurIPS 2021)</i> (pp. 1–13). https://doi.org/10.34726/1841</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18978
-
dc.identifier.uri
https://doi.org/10.34726/1841
-
dc.description.abstract
We systematically study the query complexity of learning geodesically convex halfspaces on graphs. Geodesic convexity is a natural generalisation of Euclidean convexity and allows the definition of convex sets and halfspaces on graphs. We prove an upper bound on the query complexity linear in the treewidth and the minimum hull set size but only logarithmic in the diameter. We show tight lower bounds along well-established separation axioms and identify the Radon number as a central parameter of the query complexity and the VC dimension. While previous bounds typically depend on the cut size of the labelling, all parameters in our bounds can be computed from the unlabelled graph. We provide evidence that ground-truth communities in real-world graphs are often convex and empirically compare our proposed approach with other active learning algorithms.
en
dc.language.iso
en
-
dc.relation.ispartofseries
NeurIPS Proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
active learning
en
dc.subject
learning theory
en
dc.subject
semi-supervised learning
en
dc.subject
transduction
en
dc.subject
vertex classification
en
dc.subject
graphs
en
dc.subject
convexity theory
en
dc.subject
geodesic convexity
en
dc.subject
shortest paths
en
dc.subject
halfspaces
en
dc.subject
query complexity
en
dc.title
Active Learning of Convex Halfspaces on Graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/1841
-
dc.relation.isbn
9781713845393
-
dc.description.startpage
1
-
dc.description.endpage
13
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Neural Information Processing Systems 34 (NeurIPS 2021)
-
tuw.container.volume
34
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
NeurIPS Proceedings
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17203422
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0001-9333-2685
-
tuw.author.orcid
0000-0001-5985-9213
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-9333-2685
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering