<div class="csl-bib-body">
<div class="csl-entry">Jork, N. A. (2023). <i>Finite Element Error Analysis and Solution Stability of Affine Optimal Control Problems</i> (No. 2023–01). https://doi.org/10.34726/5231</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189814
-
dc.identifier.uri
https://doi.org/10.34726/5231
-
dc.description.abstract
We consider affine optimal control problems subject to semilinear elliptic PDEs. The results are two-fold; first, we continue the analysis of solution stability of control problems under perturbations appearing jointly in the objective functional and the PDE. In regard to this, we prove that a coercivity-type property, that appears in the context of optimal control problems where the optimal control is of bang-bang structure, is sufficient for solution stability estimates for the optimal controls. The second result is concerned with the obtainment of error estimates for the numerical approximation for a finite element and a variational discretization scheme.
The error estimates for the optimal controls and states are obtained under several conditions of different strengths, that appeared recently in the context of solution stability. The approaches used for the proofs are motivated by the structure of the assumptions and enable an improvement of the error estimates for the finite element scheme for the optimal controls and states under a H¨older-type growth condition.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartofseries
Research Reports
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
optimal control
en
dc.subject
elliptic PDEs
en
dc.subject
Hölder-type growth condition
en
dc.title
Finite Element Error Analysis and Solution Stability of Affine Optimal Control Problems
en
dc.type
Report
en
dc.type
Bericht
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/5231
-
dc.relation.issn
2521-313X
-
dc.relation.grantno
P 31400-N32
-
dc.relation.grantno
I 4571-N
-
dc.type.category
Research Report
-
tuw.relation.ispartofseries
Research Reports
-
tuw.project.title
Optimale Steuerung mit endlichen Steuerungsmengen und Anwendungen in der Modelbasierten Regelung
-
tuw.project.title
Regularität von Abbildungen - Theorie und Anwendungen
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
dc.identifier.libraryid
AC17203704
-
dc.description.numberOfPages
25
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
dc.identifier.reportid
2023-01
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research report
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18ws
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)