<div class="csl-bib-body">
<div class="csl-entry">Segura, N. J., Pichler, B., & Hellmich, C. (2023). Influence Tensors for the Analytical Mechanics of Anisotropic Eigenstressed Composites with Inclusions of Various Shapes and Orientations. In H. Altenbach, H. Irschik, & A. Porubov (Eds.), <i>Progress in Continuum Mechanics</i> (Vol. 196, pp. 215–242). Springer. https://doi.org/10.1007/978-3-031-43736-6_14</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189830
-
dc.description.abstract
The Mori-Tanaka-Benveniste scheme is very popular for the homogenization of the elastic stiffness of microheterogeneous composites consisting of one matrix phase and any number of inclusion phases. In addition, the scheme allows for homogenization of eigenstresses/eigenstrains, e.g. in the fields of poroelasticity, thermoelasticity, drying shrinkage, and elastoplasticity. Still, the Mori-Tanaka-Benveniste scheme cannot appropriately represent matrix-inclusion composites with non-aligned ellipsoidal inclusion phases, because (i) the respective homogenized stiffness estimate becomes non-symmetrical, and (ii) the eigenstrain influence tensors do not satisfy the elastic reciprocal theorem. This problem has been recently solved by direct symmetrization of the homogenized Mori-Tanaka-Benveniste stiffness estimate, with corresponding modification of the matrix strains leading to improved macro-to-micro strain concentration tensor estimates. The present contribution extends these recent progress towards eigenstressed media, in terms of novel estimates for microscopic eigenstress-to-strain influence tensors which are (i) kinematically compatible, in the sense of satisfying the strain average rule, (ii) statistically admissible, in the sense that the stress average rule delivers the same macroscopic stress state as Levin’s theorem, and (iii) energetically consistent, in the sense of satisfying the elastic reciprocal theorem.
en
dc.language.iso
en
-
dc.subject
Mori-Tanaka-Benveniste Scheme
en
dc.subject
Analytical Mechanics
en
dc.subject
Anisotropic Eigenstressed Composites
en
dc.title
Influence Tensors for the Analytical Mechanics of Anisotropic Eigenstressed Composites with Inclusions of Various Shapes and Orientations
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.editoraffiliation
Otto von Guericke Universität Magdeburg, Germany
-
dc.contributor.editoraffiliation
Russian Academy of Sciences, Russia
-
dc.relation.isbn
978-3-031-43736-6
-
dc.relation.issn
1869-8433
-
dc.description.startpage
215
-
dc.description.endpage
242
-
dc.type.category
Edited Volume Contribution
-
dc.relation.eissn
1869-8441
-
tuw.booktitle
Progress in Continuum Mechanics
-
tuw.container.volume
196
-
tuw.book.ispartofseries
Advanced Structured Materials
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
tuw.publication.orgunit
E202-03 - Forschungsbereich Baustatik und experimentelle Mechanik
-
tuw.publisher.doi
10.1007/978-3-031-43736-6_14
-
dc.description.numberOfPages
28
-
tuw.author.orcid
0000-0002-6468-1840
-
tuw.editor.orcid
0000-0003-3502-9324
-
tuw.editor.orcid
0000-0002-9893-7242
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.grantfulltext
restricted
-
crisitem.author.dept
E202-03 - Forschungsbereich Baustatik und experimentelle Mechanik
-
crisitem.author.dept
E202-03 - Forschungsbereich Baustatik und experimentelle Mechanik
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.orcid
0000-0002-6468-1840
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen