<div class="csl-bib-body">
<div class="csl-entry">Schneider, U. (2023, November 15). <i>A Unified Framework for Pattern Recovery in Penalized Estimation and its Geometry</i> [Presentation]. Advanced Statistical Seminar 2023, Prag, Czechia. http://hdl.handle.net/20.500.12708/189853</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189853
-
dc.description.abstract
We consider the framework of penalized estimation where the penalty term is given by a polyhedral norm, or more generally, a polyhedral gauge, which encompasses methods such as LASSO (and many variants including the generalized LASSO), SLOPE, OSCAR, PACS and others. Each of these estimators can uncover a different structure or ``pattern'' of the unknown parameter vector. We define a general notion of patterns based on subdifferentials and formalize an approach to measure pattern complexity. For pattern recovery, we provide a minimal condition for a particular pattern to be detected by the procedure with positive probability, the so-called accessibility condition. We also introduce the stronger noiseless recovery condition which can be shown to play exactly the same role as the well-known irrepresentability condition for the LASSO in that the probability of pattern recovery in our general framework is bounded by 1/2 if the condition is not satisfied. Finally, we prove that the noiseless recovery condition can indeed be relaxed when turning to so-called thresholded penalized
estimation: in this setting, the accessibility condition is already sufficient (and necessary) for sure pattern recovery provided that the signal of the pattern is large enough. We demonstrate how our findings can be interpreted through a geometrical lens throughout the talk and illustrate our results for LASSO and SLOPE in particular.
en
dc.language.iso
en
-
dc.subject
Pattern Recovery
en
dc.subject
Penalized Estimation
en
dc.title
A Unified Framework for Pattern Recovery in Penalized Estimation and its Geometry
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Presentation
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
40
-
tuw.publication.orgunit
E105-02 - Forschungsbereich Ökonometrie und Systemtheorie
-
tuw.event.name
Advanced Statistical Seminar 2023
en
tuw.event.startdate
15-11-2023
-
tuw.event.enddate
15-11-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Prag
-
tuw.event.country
CZ
-
tuw.event.institution
Charles University in Prague
-
tuw.event.presenter
Schneider, Ulrike
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
80
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference presentation
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/R60J-J5BD
-
item.grantfulltext
none
-
crisitem.author.dept
E105-02 - Forschungsbereich Ökonometrie und Systemtheorie
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik