<div class="csl-bib-body">
<div class="csl-entry">Wolff, D., Fricke, C. D., Kemmerling, M., & Elgeti, S. (2023). Towards shape optimization of flow channels in profile extrusion dies using reinforcement learning. <i>Proceedings in Applied Mathematics and Mechanics</i>, <i>22</i>(1), Article e202200009. https://doi.org/10.1002/pamm.202200009</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189945
-
dc.description.abstract
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to impart the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one [1]. To avoid these deviations, we want to optimize the shape of the flow channel inside the die computationally. This has already been investigated in the literature using conventional optimization approaches [2,3].
In this work, we investigate the feasibility of Reinforcement Learning (RL) as a learning-based approach for shape optimization. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment, which for this application stems from a high-fidelity Finite Element Method (FEM) simulation.
We will introduce a 2D test case as a proof-of-concept, in which an RL agent learns to change the geometry of a flow channel by modifying its representation as computational mesh through a spline-based deformation method known as Free Form Deformation (FFD) [4]. We will show that an agent can be trained to optimize the geometry for different values of the quantity of interest and that the learning behavior is reproducible, which renders the RL-based approach promising for further research.
en
dc.language.iso
en
-
dc.publisher
Wiley
-
dc.relation.ispartof
Proceedings in Applied Mathematics and Mechanics
-
dc.subject
Reinforcement Learning
en
dc.subject
Shape Optimization
en
dc.subject
Profile Extrusion
en
dc.title
Towards shape optimization of flow channels in profile extrusion dies using reinforcement learning
en
dc.type
Article
en
dc.type
Artikel
de
dcterms.dateSubmitted
2022-09-07
-
dc.type.category
Original Research Article
-
tuw.container.volume
22
-
tuw.container.issue
1
-
tuw.peerreviewed
false
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
34
-
dcterms.isPartOf.title
Proceedings in Applied Mathematics and Mechanics
-
tuw.publication.orgunit
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
tuw.publication.orgunit
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
tuw.publication.orgunit
E317-01-2 - Forschungsgruppe Struktur- und Werkstoffsimulation
-
tuw.publisher.doi
10.1002/pamm.202200009
-
dc.date.onlinefirst
2023-03-24
-
dc.identifier.articleid
e202200009
-
dc.identifier.eissn
1617-7061
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-9495-2285
-
tuw.author.orcid
0000-0003-0141-2050
-
tuw.author.orcid
0000-0002-4474-1666
-
dc.description.sponsorshipexternal
EXC-2023 Internet of Production
-
dc.description.sponsorshipexternal
RWTH Aachen
-
dc.relation.grantnoexternal
390621612
-
dc.relation.grantnoexternal
thes1136
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.dept
E317-01-2 - Forschungsgruppe Struktur- und Werkstoffsimulation
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.orcid
0000-0002-9495-2285
-
crisitem.author.orcid
0000-0003-0141-2050
-
crisitem.author.orcid
0000-0002-4474-1666
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik