<div class="csl-bib-body">
<div class="csl-entry">Freyer, A., & Henk, M. (2023). <i>Polynomial Bounds in Koldobsky’s Discrete Slicing Problem</i>. arXiv. https://doi.org/10.34726/5243</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189969
-
dc.identifier.uri
https://doi.org/10.34726/5243
-
dc.description.abstract
In this article we show that dⁿ is bounded from above by cn²ω(n), where c is an absolute constant and ω(n) is the flatness constant. Due to the best known upper bound on ω(n) this gives a cn¹⁰/³log(n)ᵃ bound on dⁿ where a is another absolute constant. This bound improves on former bounds which were exponential in the dimension.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
-
dc.subject
Lattice Width
en
dc.subject
Slicing Problem
en
dc.subject
Flatness Theorem
en
dc.title
Polynomial Bounds in Koldobsky's Discrete Slicing Problem
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Attribution-ShareAlike 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
de
dc.identifier.doi
10.34726/5243
-
dc.identifier.arxiv
2303.15976
-
dc.contributor.affiliation
Technische Universität Berlin, Germany
-
dc.relation.grantno
P 34446-N
-
tuw.project.title
Bewertungen auf konvexen Funktionen
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.48550/arXiv.2303.15976
-
dc.identifier.libraryid
AC17203281
-
dc.description.numberOfPages
11
-
dc.rights.identifier
CC BY-SA 4.0
de
dc.rights.identifier
CC BY-SA 4.0
en
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openaccessfulltext
Open Access
-
item.openairetype
preprint
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
Technische Universität Berlin
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie