<div class="csl-bib-body">
<div class="csl-entry">Fricke, C., Wolff, D., Kemmerling, M., & Elgeti, S. (2023). Investigation of reinforcement learning for shape optimization of 2D profile extrusion die geometries. <i>Advances in Computational Science and Engineering</i>, <i>1</i>(1), 1–35. https://doi.org/10.3934/acse.2023001</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189974
-
dc.description.abstract
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to attain the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one. To avoid these deviations, the shape of the die can be computationally optimized, which has already been investigated in the literature using classical optimization approaches [7,32,47].
A new approach in the field of shape optimization is the utilization of RL as a learning-based optimization algorithm. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment. While not necessarily superior to classical, e.g., gradient-based or evolutionary, optimization algorithms for one single problem, RL techniques are expected to perform especially well when similar optimization tasks are repeated since the agent learns a more general strategy for generating optimal shapes instead of concentrating on just one single problem.
In this work, we investigate this approach by applying it to two 2D test cases. The flow-channel geometry can be modified by the RL agent using so-called FFD [34], a method where the computational mesh is embedded into a transformation spline, which is then manipulated based on the control-point positions. In particular, we investigate the impact of utilizing different agents on the training progress and the potential of wall time saving by utilizing multiple environments during training.
en
dc.language.iso
en
-
dc.publisher
American Institute of Mathematical Sciences (AIMS)
-
dc.relation.ispartof
Advances in Computational Science and Engineering
-
dc.subject
Reinforcement Learning
en
dc.subject
Shape Optimization
en
dc.subject
Free Form Deformation
en
dc.subject
Computational Fluid Dynamics
en
dc.subject
Profile Extrusion
en
dc.title
Investigation of reinforcement learning for shape optimization of 2D profile extrusion die geometries
-
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
1
-
dc.description.endpage
35
-
dcterms.dateSubmitted
2022-10-28
-
dc.type.category
Original Research Article
-
tuw.container.volume
1
-
tuw.container.issue
1
-
tuw.peerreviewed
false
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
34
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
33
-
dcterms.isPartOf.title
Advances in Computational Science and Engineering
-
tuw.publication.orgunit
E317-01 - Forschungsbereich Leichtbau
-
tuw.publication.orgunit
E317-01-2 - Forschungsgruppe Struktur- und Werkstoffsimulation
-
tuw.publication.orgunit
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
tuw.publisher.doi
10.3934/acse.2023001
-
dc.date.onlinefirst
2023-03
-
dc.identifier.articleid
1
-
dc.identifier.eissn
2837-1739
-
dc.description.numberOfPages
35
-
tuw.author.orcid
0000-0002-9495-2285
-
tuw.author.orcid
0000-0003-0141-2050
-
tuw.author.orcid
0000-0002-4474-1666
-
dc.description.sponsorshipexternal
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
-
dc.description.sponsorshipexternal
RWTH Aachen
-
dc.description.sponsorshipexternal
RWTH Aachen
-
dc.relation.grantnoexternal
390621612
-
dc.relation.grantnoexternal
thes1136
-
dc.relation.grantnoexternal
jara0185
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E317-01-2 - Forschungsgruppe Struktur- und Werkstoffsimulation
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.dept
RWTH Aachen University
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.orcid
0000-0002-9495-2285
-
crisitem.author.orcid
0000-0003-0141-2050
-
crisitem.author.orcid
0000-0002-4474-1666
-
crisitem.author.parentorg
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik