<div class="csl-bib-body">
<div class="csl-entry">Medini, A., & Vidnyánszky, Z. (2024). Zero-dimensional σ-homogeneous spaces. <i>Annals of Pure and Applied Logic</i>, <i>175</i>(1), Article 103331. https://doi.org/10.1016/j.apal.2023.103331</div>
</div>
-
dc.identifier.issn
0168-0072
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189980
-
dc.description.abstract
All spaces are assumed to be separable and metrizable. Ostrovsky showed that every zero-dimensional Borel space is σ-homogeneous. Inspired by this theorem, we obtain the following results:
• Assuming 𝗔𝗗, every zero-dimensional space is σ-homogeneous,
• Assuming 𝗔𝗖, there exists a zero-dimensional space that is not σ-homogeneous,
• Assuming 𝗩 = 𝗟, there exists a coanalytic zero-dimensional space that is not σ-homogeneous.
Along the way, we introduce two notions of hereditary rigidity, and give alternative proofs of results of van Engelen, Miller and Steel. It is an open problem whether every analytic zero-dimensional space is σ-homogeneous.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Annals of Pure and Applied Logic
-
dc.subject
Homogeneous
en
dc.subject
Zero-dimensional
en
dc.subject
Determinacy
en
dc.subject
Wadge theory
en
dc.subject
Constructible
en
dc.subject
Rigid
en
dc.title
Zero-dimensional σ-homogeneous spaces
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Eötvös Loránd University, Hungary
-
dc.type.category
Original Research Article
-
tuw.container.volume
175
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Annals of Pure and Applied Logic
-
tuw.publication.orgunit
E104-08 - Forschungsbereich Mengenlehre
-
tuw.publisher.doi
10.1016/j.apal.2023.103331
-
dc.date.onlinefirst
2023-07-16
-
dc.identifier.articleid
103331
-
dc.identifier.eissn
1873-2461
-
dc.description.numberOfPages
21
-
tuw.author.orcid
0000-0003-3914-3087
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.dept
Eötvös Loránd University
-
crisitem.author.orcid
0000-0003-3914-3087
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie